I assume you mean one that is not rational, such as √2. In such a case, you make a reasonable estimate of it's position, and then label the point that you plot.
For example, you know that √2 is greater than 1 and less than 2, so put the point at about 1½ (actual value is about 1.4142).
For √3, you know the answer is still less than 4, but greater than √2. If both of those points are required to be plotted just make sure you put it in proper relation, otherwise about 1¾ is plenty good (actual value is about 1.7321).
If you are going to get into larger numbers, it's not a bad idea to just learn a few roots. Certainly 2, 3, and 5 (2.2361) and 10 (3.1623) shouldn't be too hard.
Then for a number like 20, which you can quickly workout is √4•√5 or 2√5, you could easily guess about 4½ (4.4721).
They're usually not really interested in your graphing skills on this sort of exercise. They just want you to demonstrate that you have a grasp of the magnitude of irrational numbers.
Answer:
19x-19+23y
Step-by-step explanation:
add the like terms
<h3>
Answer: c. 8(y-6) = (x-2)^2</h3>
Explanation:
The directrix is horizontal, so the axis of symmetry is vertical. We'll have an x^2 term. The vertical distance from y = 4 to y = 8 is 4 units. Cut this in half to get 2, which is the focal distance p = 2.
The point (2,4) is directly below (2,8), and the point is on the directrix. The midpoint between (2,4) and (2,8) is (2,6). This is the vertex.
(h,k) = (2,6)
4p(y-k) = (x-h)^2
4*2(y-6) = (x-2)^2
8(y-6) = (x-2)^2
Answer:
The answer is x = 7. Hope this helps.
Answer:
5√3 / 2
Step-by-step explanation:
tan 30 = ( 5 / 2 ) / y
1 / √3 = 5 / 2y
2y = 5√3
y = 5√3 / 2