RS => y - 5 = (8 - 5)/(1 - (-1)) (x - (-1))
y - 5 = 3/2 (x + 1) => slope = 3/2
ST => y - 8 = (-2 - 8)/(7 - 1) (x - 1)
y - 8 = -10/6 (x - 1) = -5/3 (x - 1) => slope = -5/3
TU => y - (-2) = (0 - (-2))/(2 - 7) (x - 7)
y + 2 = 2/5(x - 7) => slope = 2/5
UR => y = 5/(-1 - 2) (x - 2)
y = -5/3 (x - 2) => slope = -5/3
The median is the line joining the midpoints of the non-parallel sides.
Midpoint of RS = ((-1 + 1)/2, (5 + 8)/2) = (0, 13/2)
Midpoint of TU = ((7 + 2)/2, -2/2) = (9/2, -1)
Equation of the line joining (0, 13/2) and (9/2, -1) is given by y - 13/2 = (-1 - 13/2)/(9/2) x
y - 13/2 = (-15/2)/(9/2) x
y - 13/2 = -15/9x
18y - 117 = -30x
30x + 18y = 117
Answer: 24
Step-by-step explanation:
you add 12 to 39 which equals 51 then you subtract 51 from 75 which equals 24
hope this helps
The correct answer is 67 ur welcome
Answer:
(-20,-10)
Step-by-step explanation:
![( - 10 \: \: - 3) = ( \frac{0 + x}{2} \: \: \frac{4 + y}{2} )](https://tex.z-dn.net/?f=%28%20-%2010%20%5C%3A%20%20%5C%3A%20%20-%203%29%20%3D%20%28%20%5Cfrac%7B0%20%2B%20x%7D%7B2%7D%20%20%5C%3A%20%20%5C%3A%20%20%5Cfrac%7B4%20%2B%20y%7D%7B2%7D%20%29)
Solve for.x coordinate
![- 10 = \frac{0 + x}{2} \\ - 20 = 0 + x \\ x = - 20](https://tex.z-dn.net/?f=%20-%2010%20%3D%20%20%5Cfrac%7B0%20%2B%20x%7D%7B2%7D%20%20%5C%5C%20%20-%2020%20%3D%200%20%2B%20x%20%5C%5C%20x%20%3D%20%20-%2020)
solve for y coordinate
![- 3 = \frac{4 + y}{2} \\ - 6 = 4 + y \\ - 10 = y](https://tex.z-dn.net/?f=%20-%203%20%3D%20%20%5Cfrac%7B4%20%2B%20y%7D%7B2%7D%20%20%5C%5C%20%20-%206%20%3D%204%20%2B%20y%20%5C%5C%20%20-%2010%20%3D%20y)
The regular hexagon has both reflection symmetry and rotation symmetry.
Reflection symmetry is present when a figure has one or more lines of symmetry. A regular hexagon has 6 lines of symmetry. It has a 6-fold rotation axis.
http://prntscr.com/96ow2n
Rotation symmetry is present when a figure can be rotated (less than 360°) and still look the same as before it was rotated. The center of rotation is a point a figure is rotated around such that the rotation symmetry holds. A regular hexagon can be rotated 6 times at an angle of 60°
http://prntscr.com/96oxjx