Answer:
N, B, Be, C
Explanation:
N (Nitrogen) has 14.0067 B (Boron) has 10.81 Be (Beryllium) has 9 and C (Carbon) has 12
14.292 grams of Fe2O3 is formed when 10 gram of iron metal is burned.
Explanation:
The balanced equation for the reaction is to be known so that number of moles taking part can be known.
The balanced chemical equation is
4Fe + 3
⇒ 2 

From the given weight of iron to be used for the production of 
, number of moles of Fe taking part in the reaction can be known by the formula:
Number of moles= mass ÷ Atomic mass of one mole of the element.
(Atomic weight of Fe is 55.845 gm/mole)
Putting the values in equation
Number of moles = 10 gm ÷ 55.845 gm/mole
= 0.179 moles
Applying the stoichiometry concept
4 moles of Fe gives 2 Moles of Fe2O3
0.179 moles will produce x moles of Fe2O3
So, 2÷ 4 = x ÷ 0.179
2/4 = x/ 0.179
2 × 0.179 = 4x
2 × 0.179 / 4 = x
x = 0.0895 moles
So from 10 grams of iron metal 0.0895 moles of Fe2O3 is formed.
Now the formula used above will give the weight of Fe2O3
weight = atomic weight × number of moles
= 159.69 grams × 0.0895
= 14.292 grams of Fe2O3 formed.
Velocity is said to be constant if its magnitude as well direction at any instant is remains the same. In D, if you draw a line parallel to y-axis at any time t, you can see that velocity is same. Hence, D is the correct graph.
The kinetic energy of gaseous molecules is greater than that of liquid molecules. Therefore, in gas, kinetic energy overcomes the force of attraction between molecules. In short, in gas phase, particles move at high speed and hence they have less force of attraction. In case of liquid phase, particles are close enough as a result there is much more force of attraction compared to gaseous molecules. In liquid state, kinetic energy cannot overcome force of attraction therefore, liquid molecules slow down.
Therefore, B is the correct answer.
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation of an atom in a chemical compound.
<u>Explanation:</u>
The oxidation number of an atom is the charge that atom would have if the compound was composed of ions. 1. The oxidation number of an atom is zero in a neutral substance that contains atoms of only one element. The oxidation number of simple ions is equal to the charge on the ion.
The oxidation number of a mono atomic ion equals the charge of the ion. The oxidation number of H is +1, but it is -1 in when combined with less electro negative elements. The oxidation number of O in compounds is usually -2, but it is -1 in peroxides. The oxidation number of a Group 1 element in a compound is +1.
Answer:
0.85 mole of PBr3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Br2 + 2P —> 2PBr3
From the balanced equation above,
3 moles of Br2 reacted to produce 2 moles of PBr3.
Therefore, 1.27 moles of Br2 will react to produce = (1.27 x 2)/ 3 = 0.85 mole of PBr3.
Therefore, 0.85 mole of PBr3 is produced by the reaction.