Answer:
B: increase.
Explanation:
When we are considering two gases A and B in a container at room temperature .
We have to find the change on rate of reaction when the number of molecules of gases A is doubled
Let [A]=a and [B]=b
A+B
product
Rate of reaction
![R_1=k[A][B]=kab](https://tex.z-dn.net/?f=R_1%3Dk%5BA%5D%5BB%5D%3Dkab)
We know that concentration is increases with increase in number of moles
When the number of molecules of gases A is doubled then concentration of gases A increases.
Therefore ,[A]=2a
Rate of reaction


Hence, the rate of reaction is 2 times the initial rate of reaction.Therefore, the rate of reaction will increase when the number of molecules of gases A is doubled.
Answer: B: increase.
Balanced chemical reaction: 2CH₄(g) ⇄ C₂H₂(g) + 3H₂(g).
1) In a chemical reaction, chemical equilibrium is the state in which both reactants (methane CH₄) and products (ethyne C₂H₂ and hydrogen H₂) are present in concentrations which have no further tendency to change with time.
2) At equilibrium, both the forward and reverse reactions are still occurring.
3) Reaction rates of the forward and backward reactions are equal and there are no changes in the concentrations of the reactants and products.
When atoms and molecules speed up or slow down, that is a physical change. When they change state from liquid to solid or from gas to liquid, that is a physical change. ... The ions or molecules can still come back together to form the original substance