Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s
That is 0.35 liters. i hope that is the correct answer?
Explanation:
Speed of the marathon runner, v = 9.51 mi/hr
Distance covered by the runner, d = 26.220 mile
Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :



t = 2.75 hours
Since, 1 hour = 60 minutes
t = 165 minutes
Since, 1 minute = 60 seconds
t = 9900 seconds
Hence, this is the required solution.
Answer:
Velocity of electron along x direction is 57.9 m/s
Explanation:
The uncertainty in x coordinate of electron, Δx = 0.200 mm = 0.2 x 10⁻³ m
Let vₓ be the x component of electrons velocity.
The uncertainty in x component of electrons momentum is:
Δpₓ = mΔvₓ
Here m is mass of the electron.
The uncertainty in velocity x component is 1% i.e. 0.01.
So, the above equation can be written as :
Δpₓ = 0.01mvₓ ....(1)
The minimum uncertainty principle is:
....(2)
Here h is Planck's constant.
From equation (1) and (2),

Substitute 0.2 x 10⁻³ m for Δx, 9.1 x 10⁻³¹ kg for m and 6.626 x 10⁻³⁴ m²kg/s in the above equation.

vₓ = 57.9 m/s
Explanation:
Dark Energy. Dark Energy is a hypothetical form of energy that exerts a negative, repulsive pressure, behaving like the opposite of gravity. It has been hypothesised to account for the observational properties of distant type Ia supernovae, which show the universe going through an accelerated period of expansion