Answer:
the density of ordinary (baryonic) matter in the universe
Explanation:
Deuterium detection is of interest because the amount of it may be related to the amount of dark matter in the universe, but precise measurements have been difficult to obtain. Due to the way in which deuterium was created in the Big Bang, an exact measurement of the amount of deuterium would allow scientists to set limits on the models of the great explosion.
Also, an exact measure of deuterium would be an indicator of the cosmic density of barions (ordinary matter), and that density of barions would indicate whether ordinary matter is dark and is found in regions such as black holes, gas clouds or brown dwarfs, or it is bright and can be found in the stars. This information will help scientists who try to understand the very beginning of our universe.
If you hear a clap of thunder in a time of 16.2s after seeing the associated lightning strike, you are: 5508 m far from the lightning strike
To solve this problem we must consider that the speed of light is greater than the speed of sound, therefore to calculate the distance we must use the speed of sound (340 m/s).
The formula and procedure we will use to solve this exercise is:
x = v * t
Where:
- x = distance
- t = time
- v = velocity
Information about the problem:
- v(sound) = 340 m/s
- t = 16.2 s
- x=?
Applying the distance formula we have that:
x = v * t
x= 340 m/s * 16.2 s
x = 5508 m
<h3>What is velocity?</h3>
It is a physical quantity that indicates the displacement of a mobile per unit of time, it is expressed in units of distance per time, for example (miles/h, km/h).
Learn more about velocity at: brainly.com/question/80295?source=archive
#SPJ4
F=mv^2/R
----> V^2=FR/m=(350x0.9)/2.5=126
----- V=11.22 m/s
The answer i think would be D
Answer:
its 1/2 the mass of the object times by its velocity ^ 2