Easy !
Take any musical instrument with strings ... a violin, a guitar, etc.
The length of the vibrating part of the strings doesn't change ...
it's the distance from the 'bridge' to the 'nut'.
Pluck any string. Then, slightly twist the tuning peg for that string,
and pluck the string again.
Twisting the peg only changed the string's tension; the length
couldn't change.
-- If you twisted the peg in the direction that made the string slightly
tighter, then your second pluck had a higher pitch than your first one.
-- If you twisted the peg in the direction that made the string slightly
looser, then your second pluck had a lower pitch than the first one.
Answer:
Equilibrium temperature will be 
Explanation:
We have given weight of the lead m = 2.61 gram
Let the final temperature is T
Specific heat of the lead c = 0.128
Initial temperature of the lead = 11°C
So heat gain by the lead = 2.61×0.128×(T-11°C)
Mass of the water m = 7.67 gram
Specific heat = 4.184
Temperature of the water = 52.6°C
So heat lost by water = 7.67×4.184×(T-52.6)
We know that heat lost = heat gained
So 


Answer:
30 m
Explanation:
The wavelength of a wave is found by the velocity divided by the frequency. Therefore, the wavelength is (300 m/s)/(10 Hz) = 30 m
I hope this helps! :)
Well simple the warm water then replaces the cold current that sinks to the ocean floor.
Answer:
The height is 1,225 meters
Explanation:
DistanceX= speedX × time ⇒ time= (5 meters) ÷ (10 meters/second) = 0,5 seconds
DistanceY= high= (1/2) × g × (time^2) = (1/2) × 9,8 (meters/(second^2)) × 0,25 (second^2) = 1,225 meters