Answer:
A meteor is B) an icy body with a long tail extending from it.
Explanation:
Meteors are very small dust particles that, when penetrating into the Earth's atmosphere, burn quickly by rubbing with the gases of the same. Some meteors, those with larger dimensions and appreciable weights, are brighter and can describe longer trajectories, showing longer.
In other words, the meteoroids, celestial bodies can vary in size between 100 micrometers up to 50 meters, they collide with the atmosphere of our planet and if the particles are of a small size, upon impact they enter combustion creating a flash, is what we know as meteor or shooting star. Therefore, the meteor is a luminous phenomenon that leaves behind a persistent trail.
So, <u><em>a meteor is B) an icy body with a long tail extending from it.</em></u>
If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.
The greatest percent of mass of the universe is dark matter
The number of protons always differs in atoms of different elements.
Answer:
H=1020.12m
Explanation:
From a balance of energy:
where H is the height it reached, d is the distance it traveled along the ramp and Ff = μk*N.
The relation between H and d is given by:
H = d*sin(30) Replace this into our previous equation:

From a sum of forces:
N -mg*cos(30) = 0 => N = mg*cos(30) Replacing this:
Now we can solve for d:
d = 2040.23m
Thus H = 1020.12m