![\boxed{\boxed{\text{Perimeter = 2(Length + Width)}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Ctext%7BPerimeter%20%3D%202%28Length%20%2B%20Width%29%7D%7D%7D)
Given that the perimeter is 16ft and width is 5 ft,
![16 = 2( Length + 5)](https://tex.z-dn.net/?f=16%20%3D%202%28%20Length%20%2B%205%29)
Distribute 2:
![16 = 2Length + 10](https://tex.z-dn.net/?f=16%20%3D%202Length%20%2B%2010)
Take away 10 from both sides:
![2Length = 16 - 10](https://tex.z-dn.net/?f=2Length%20%3D%2016%20-%2010)
Evaluate the right hand side:
![2Length = 6](https://tex.z-dn.net/?f=2Length%20%3D%206)
Divide by 2 on both sides:
![Length = 3](https://tex.z-dn.net/?f=Length%20%3D%203)
Answer:
The value of x is 9.
Step-by-step explanation:
55°
(3 x + 23)
75°
The sum of all the angles of triangle is 180°.
55 + 3 x + 23 + 75 = 180
3 x = 27
x = 9
So, the value of x is 9.
The diagonal (hypotenuse) is 13 in.
You need to use the Pythagorean Theorem
![{a}^{2} + {b}^{2} = {c}^{2}](https://tex.z-dn.net/?f=%20%7Ba%7D%5E%7B2%7D%20%2B%20%7Bb%7D%5E%7B2%7D%20%3D%20%7Bc%7D%5E%7B2%7D%20)
then just plug in the numbers and solve for c.
![{12}^{2} + {5}^{2} = {c}^{2}](https://tex.z-dn.net/?f=%20%7B12%7D%5E%7B2%7D%20%2B%20%7B5%7D%5E%7B2%7D%20%3D%20%7Bc%7D%5E%7B2%7D%20)
![\sqrt{169} = c](https://tex.z-dn.net/?f=%20%5Csqrt%7B169%7D%20%3D%20c)
13 = c
the picture in the attached figure
Applying the Pythagorean Theorem
Find the lengths of the two sidewalks
Step 1
square section
D=√{15²+15²}
D=√450 m
D=21.21 m
Step 2
rectangular section
D=√{15²+8²}
D=√289 m
D=17 m
Step 3
the sum of the lengths of the diagonals of the two sections is
17m + 21.21 m = 38.21 m
the answer is
38.2 m