Answer:
3.00 cm
Explanation:
The absorbance can be expressed using <em>Beer-Lambert's law</em>:
A = ε*b*c
Where ε is a constant for each compound, b is the optical path, and c is the molar concentration of the compound.
Now we <u>match the absorbance values for both solutions</u>, because we want the absorbance value to be the same for both solutions:
A = ε * 1.00 cm * 7.68x10⁻⁶M = ε * b * 2.56x10⁻⁶ M
And <u>solve for b:</u>
ε * 1.00 cm * 7.68x10⁻⁶M = ε * b * 2.56x10⁻⁶ M
1.00 cm * 7.68x10⁻⁶M = b * 2.56x10⁻⁶ M
b = 3.00 cm
N(Cu) = 7.8x10^21/6.02x10^23
n(Cu)=0.013moles of copper
I believe the correct answer from the choices listed above is option A. Multiplying 42 by 2/3, or 0.667, would be most useful for c<span>alculating the moles of O2 needed to produce 42 moles of CO2. Hope this answers the question.</span>
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.