Answer:
A)
.
B)
.
C) 0.9 mol.
D) Increasing both temperature and pressure.
Explanation:
Hello,
In this case, given the information, we proceed as follows:
A)

B) For the calculation of Kc, we rate the equilibrium expression:
![Kc=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Next, since at equilibrium the concentration of ammonia is 0.6 M (0.9 mol in 1.5 dm³ or L), in terms of the reaction extent
, we have:
![[NH_3]=0.6M=2*x](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.6M%3D2%2Ax)

Next, the concentrations of nitrogen and hydrogen at equilibrium are:
![[N_2]=\frac{1.5mol}{1.5L}-x=1M-0.3M=0.7M](https://tex.z-dn.net/?f=%5BN_2%5D%3D%5Cfrac%7B1.5mol%7D%7B1.5L%7D-x%3D1M-0.3M%3D0.7M)
![[H_2]=\frac{4mol}{1.5L}-3*x=2.67M-0.9M=1.77M](https://tex.z-dn.net/?f=%5BH_2%5D%3D%5Cfrac%7B4mol%7D%7B1.5L%7D-3%2Ax%3D2.67M-0.9M%3D1.77M)
Therefore, the equilibrium constant is:

C) In this case, the equilibrium yield of ammonia is clearly 0.9 mol since is the yielded amount once equilibrium is established.
D) Here, since the reaction is endothermic (positive enthalpy change), one way to increase the yield of ammonia is increasing the temperature since heat is reactant for endothermic reactions. Moreover, since this reaction has less moles at the products, another way to increase the yield is increasing the pressure since when pressure is increased the side with fewer moles is favored.
Best regards.
According to the molar gas volume, one mole of a gas occupies a volume of 22400 cm³ or 22.4 liters. The standard temperatures and pressures conditions are temperature of 0 degrees Celsius or 273 kelvin and an absolute pressure of 103.325 kPa or 1 atm. In this case, the density is 0.902 g/l and the volume is 22400 cm³,
therefore, the molar mass will be;
0.902 g/ L ×22.4 liters = 20.2048g
To convert the formula unit to mass, we need to divide the given formula units by Avogadro's number, 6.022 x 10^23 and we get the mole of beryllium nitrate. To convert to mass, we need to multiply the number of moles with the molecular formula of the compound which is 133.022 g/mol.The answer is 0.006185 g or 6.185 mg.
The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.
Answer:
3,5-dimethyl-2-octene
Explanation:
The parent chain will be choosen based on the highest value. In this case, if we count from top to bottom, we'll get seven carbon, however if we count from the second carbon, going left and then down, we'll get eight carbon. So the parent chain is octene
The double bond is located at the second carbon and the methyl groups are located on carbon 3 & 5. Since there are two methyl groups, we add di- in front of methyl to indicate two methyl groups present.
Note: The functional group has to be prioritise and it needed to be a part of the parent chain. In this case, the functional group is the double bond. (alkene)