Answer:
In the given figure, There are two atoms -
- Sodium ( Na )
- Chlorine ( Cl )
sodium has one electron in valence shell and to get noble gas configuration ( stability ) it need to donate the outer most electron.
whereas,
chlorine has 7 electrons in valence shell and to get noble gas configuration ( stability ) it need to get one more electron.
in this condition Na ( sodium ) donates it's outermost electron to Cl ( chlorine ) and both became stable.
but now sodium has more number of protons than the electrons hence it get positive (+) charge and chlorine has more electrons than the protons hence it get negative (-) charge
so, they get stick to each other by strong electrostatic force acting on the charged atoms and forms a salt " NaCl " ( sodium chloride ) .
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
The final volume of the balloon is = 28.11 L
Explanation:
Initial pressure
= 1.03 atm = 104.325 K pa
Initial temperature
= 26 °c = 299 K
Initial volume
= 22.4 L
Final temperature
= 22 °c = 295 K
Final pressure
= 0.81 atm = 82 K pa
We know that

Put all the values in above formula we get

= 28.11 L
This is the final volume of the balloon.
Answer:
is a well-sustantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment.such fact- supported theories are not "guesses" but reliable accounts of the real worlds.
Answer:
the initial concentration of SCN- in the mixture is 0.00588 M
Explanation:
The computation of the initial concentration of the SCN^- in the mixture is as follows:
As we know that

As it is mentioned in the question that KSCN is present 10 mL of 0.05 M
So, the total milimoles of SCN^- is
= 10 × 0.05
= 0.5 m moles
The total volume in mixture is
= 45 + 10 + 30
= 85 mL
Now the initial concentration of the SCN^- is
= 0.5 ÷ 85
= 0.00588 M
hence, the initial concentration of SCN- in the mixture is 0.00588 M