"The boron-nitrogen interaction in the studied molecules shows some similarities with the N→B bond in the H3N-BH3 molecule, formally understood as covalent-dative. ... The results show that all the studied BN bonds are triple, since three two-center orbitals have been obtained."
"Formation of a dative bond or coordinate bond between ammonia and boron trifluoride. When the nitrogen donates a pair of electrons to share with the boron, the boron gains an octet. ... In addition, a pair of non-bonding electrons becomes bonding; they are delocalized over two atoms and become lower in energy."
Acids and bases ionoze the water. so it would have to be A
Complete question is;
A drop of water has a volume of approximately 7 × 10⁻² ml. How many water molecules does it contain? The density of water is 1.0 g/cm³.
This question will require us to first find the number of moles and then use avogadro's number to get the number of water molecules.
<em><u>Number of water molecules = 2.34 × 10²¹ molecules</u></em>
We are given;
Volume of water; V = 7 × 10⁻² ml
Density of water; ρ = 1 g/cm³ = 1 g/ml
Formula for mass is; m = ρV
m = 1 × 7 × 10⁻²
m = 7 × 10⁻² g
from online calculation, molar mass of water = 18.01 g/mol
Number of moles(n) = mass/molar mass
Thus;
n = (7 × 10⁻²)/18.01
n = 3.887 × 10⁻³ mol
from avogadro's number, we know that;
1 mol = 6.022 × 10²³ molecules
Thus,3.887 × 10⁻³ mol will give; 6.022 × 10²³ × 3.887 × 10⁻³ = 2.34 × 10²¹ molecules
Read more at; brainly.in/question/17990661