Answer:
the mass of 8.03 mole of NH3 is 136.51 g
Explanation:
The computation of the mass is shown below:
As we know that
Mass = number of moles × molar mass
= 8.03 mol × 17 g/mol
= 136.51 g
Hence, the mass of 8.03 mole of NH3 is 136.51 g
We simply multiplied the number of moles with the molar mass so that the mass could come
Answer:
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
Explanation:
Abbreviated and unabbreviated electronic configuration:
The abbreviated electronic configuration uses the noble gas configuration i.e complete electronic shells. For example, the atomic number of neon is ten and magnesium is twelve. The abbreviated electronic configuration of magnesium is written by using the neon abbreviation in following way:
The electronic configuration of neon is given below:
Ne₁₀ = 1s² 2s² 2p⁶
The abbreviated electronic configuration of magnesium:
Mg₁₂ = [Ne] 3s²
While the unabbreviated electronic configuration is written without using noble gas electronic configuration.
Unabbreviated electronic configuration of magnesium:
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
The incorrect rule for assigning oxidation numbers is Hydrogen is usually –1.
Hydrogen is usually +1
<h3>What is oxidation number?</h3>
Oxidation numbers can be defined as that number which is assigned to an element in chemical reaction which represents the number of electrons lost or gained.
So therefore, the incorrect rule for assigning oxidation numbers is Hydrogen is usually –1.
Learn more about oxidation numbers:
brainly.com/question/27239694
#SPJ1
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536