Answer: CrO₄⁻ and Ba²⁺
Explanation:
1) Chemical equation given:
2H⁺ + CrO₄⁻ + Ba²⁺ + 2OH⁻ → Ba²⁺ + CrO₄⁻ + 2H₂O
2) Analysis
That is an oxidation-reduction equation (some species are been oxidized and others are being reduced).
The given equation is known as total ionic equation, because it shows all the species as ions that are part of the reaction.
2) Specator ions
Spectator ions are the ions that do not change their oxidation state and are easily identified as they are the same in the reactant and product sides.
Here the ions that are the same in the reactant and product sides are:
CrO₄⁻ and Ba²⁺
3) Addtitional explanation.
Once you identify the spectator ions you can delete them from the equation to obtain the net ionic equation , which in this case turns to be:
2H⁺ + 2OH⁻ → 2H₂O
But this is not part of the question; it is some context to help you understand the use of the spectator ions concept.
Windblown sand can wear away rock
Basic because a pH greater than 7 is basic
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.