Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg
Answer:
An increase
Explanation:
The strong southerly winds affect the vapor pressure by increasing it .
When the vapor pressure increases it means an increase in temperature and more evaporation occurs.
A decrease in the vapor pressure means a reduction in temperature with less amount of evaporation being involved
Answer:
doesnt increase air pollution. fertilizers leak into the waters when it rains
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!
Answer:
zero
Explanation:
I I think one should be so accurate with measurements and experiments