Answer:
The lateral surface area of the triangular prism is 379.5sq units
Step-by-step explanation:
The side lengths of the base of the triangular prism are 5 meters, 8 meters, and 10 meters.
It is given that the height of the prism is 16.5 meters.
To determine the lateral surface area of the prism, let us use the formula
where a, b,c are the side lengths of the base of the triangular prism and h is the height of the prism.
Here and
Substituting these values in the formula, we have,
Simplifying, we get,
Multiplying, we get,
Thus, the lateral surface area of the triangular prism is
Since ∠2=60° = ∠8 so it will also be 60 °
the sum of the both are 60°+∠7=180°
∠7= 180°- 60° = 120°
You are given two points in the linear function. At time 0 years, the value is $3000. At time 4 years, the value is $250. This means you have points (0, 3000) and (4, 250). You need to find the equation of the line that passes through those two points.
y = mx + b
m = (y2 - y1)/(x2 - x1) = (3000 - 250)/(0 - 4) = 2750/(-4) = -687.5
Use point (0, 3000).
3000 = -687.5(0) + b
b = 3000
The equation is
y = -687.5x + 3000
Since we are using points (t, v) instead of (x, y), we have:
v = -687.5t + 3000
Answer: d. v = -687.50 t + 3,000
Everyday about 200 people visited the store Because you would divide 2744 by 14 and get 196 and round that to 200