Answer:
Quasars inhabit the centers of active galaxies and are among the most luminous, powerful, and energetic objects known in the universe, emitting up to a thousand times the energy output of the Milky Way, which contains 200–400 billion stars.
Explanation:
sorry if im wrong
Oxygen, should be correct
sometimes we use and need mandatory
Answer:
Do it your self bro
Explanation:
You lazy bum do it yourself
Avogadro's constant is the number of atoms of carbon-12 in 12g of
carbon-12.
atoms present equals avogadro's constant times number of moles for that substance. Type of substance does not change the number of atoms if you are given the quantity of moles, therefore the fact that it is sodium does not change the value.
<span>atoms present equals avogadro's constant times number of moles
</span>=6.023x10^23 x 4.0
=2.4x10^24
It will be extracted only 1/3 of NaCl less in 10 mL of water than in 30 mL of water.
If it is known that solubility of NaCl is 360 g/L, let's find out how many NaCl is in 30 mL of water:
360 g : 1 L = x g : 30 mL
Since 1 L = 1,000 mL, then:
360 g : 1,000 mL = <span>x g : 30 mL
Now, crossing the products:
x </span>· 1,000 mL = 360 g · 30 mL
x · 1,000 mL = 10,800 g mL
x = 10,800 g ÷ 1,000
x = 10.8 g
So, from 30 mL mixture, 10.8 g of NaCl could be extracted.
Let's calculate the same for 10 mL water instead of 30 mL.
360 g : 1 L = x g : 10 mL
Since 1 L = 1,000 mL, then:
360 g : 1,000 mL = <span>x g : 10 mL
Now, crossing the products:
x </span>· 1,000 mL = 360 g · 10 mL
x · 1,000 mL = 3,600 g mL
x = 3,600 g ÷ 1,000
<span>x = 3.6 g
</span>
<span>So, from 10 mL mixture, 3.6 g of NaCl could be extracted.
</span>
Now, let's compare:
If from 30 mL mixture, 10.8 g of NaCl could be extracted and <span>from 10 mL mixture, 3.6 g of NaCl could be extracted, the ratio is:
</span>3.6/10.8 = 1/3
Therefore, i<span>t will be extracted only 1/3 of NaCl less in 10 mL of water than in 30 mL of water. </span>