Q = mcΔt, q = energy [J] m = mass (of water) [g]; c = specific heat capacity of water [J g⁻¹ K⁻¹/°C⁻¹]; Δt = change in temperature [K/°C]
Δt = 121 - -24 = 145
q = 39 × 4.18 × 145
q = 23637.9 J
Answer:
T₁ = 135.41 K
Explanation:
Given data:
Initial pressure = 1.12 atm
Finial temperature = 36.5 °C (36.5 +273 = 309.5 K)
Initial temperature = ?
Final pressure = 2.56 atm
Formula:
P₁/T₁ = P₂/T₂
P₁ = Initial pressure
T₁ = Initial temperature
P₂ = Final pressure
T₂ = Final temperature
Solution:
P₁/T₁ = P₂/T₂
T₁ = P₁T₂ /P₂
T₁ = 1.12 atm × 309.5 K / 2.56 atm
T₁ = 346.64 atm . K / 2.56 atm
T₁ = 135.41 K
To the eye – taken by itself – Alpha Centauri A appears as the fourth-brightest star seen from Earth, just slightly outshone by Arcturus. However, the combined light of Alpha Centauri A and B is slightly greater than Arcturus, so in that sense it appears as the third-brightest star visible in Earth's sky.
C3H8 + 5O2 ------> 3CO2 + 4H2O
from reaction 1 mol 5 mol
given 1.82 mol x mol
x=(1.82*5)/1 = 9.10 mol CO2