Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum
60 miles an hr.. Because 180 divides by three is 60 and that is the answer per hr
First, you have to find the moment of inertia along the x and y axes. Constant density is denoted as k.


Then, the radii of gyration for
x = √[I_x/m]
y = [I_y/m]
where m = k(15-4)² = 121k. Then,
x = y = [4880.33k/121k] = 40.33
I hope I was able to help you. Have a good day.
A simple event is the one which has only one possible outcomes, hence such an event does not involve addition or multiplication of probabilites.
The option B gives only such a probability which can represent a simple event. The rest of the options belong to the compound events as they are sum or product of probabilities.
So, the correct answer is option B