Answer:
C.$1
Step-by-step explanation:
Since, when a die is rolled,
Then the total possible outcomes = 6 ( i.e. 1, 2, 3, 4, 5 or 6 )
Outcomes of getting number less than 3 = 2 ( i.e. 1 or 2 )
Outcomes of getting 3 or 4 = 2
Outcomes of getting 5 = 1,
Outcomes of getting 6 = 1,
![\because \text{Probability}=\frac{\text{Favourable outcomes}}{\text{Total outcomes}}](https://tex.z-dn.net/?f=%5Cbecause%20%5Ctext%7BProbability%7D%3D%5Cfrac%7B%5Ctext%7BFavourable%20outcomes%7D%7D%7B%5Ctext%7BTotal%20outcomes%7D%7D)
Thus, the probability of getting number less than 3 = ![\frac{2}{6}=\frac{1}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B6%7D%3D%5Cfrac%7B1%7D%7B3%7D)
The probability of getting 3 or 4 = ![\frac{2}{6}=\frac{1}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B6%7D%3D%5Cfrac%7B1%7D%7B3%7D)
The probability of getting 5 = ![\frac{1}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D)
The probability of getting 6 = ![\frac{1}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D)
∵ If the die shows a number less than 3 then nothing will get; if the die shows a 3 or 4, we will get x dollars; if the die shows a 5, we will get $1; and if the die shows a 6, we will get $3
So, the expected value = ![x\times \frac{1}{3}+0\times \frac{1}{3}+1\times \frac{1}{6}+3\times \frac{1}{6}](https://tex.z-dn.net/?f=x%5Ctimes%20%5Cfrac%7B1%7D%7B3%7D%2B0%5Ctimes%20%5Cfrac%7B1%7D%7B3%7D%2B1%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%2B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D)
![=\frac{x}{3}+\frac{1}{6}+\frac{1}{2}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bx%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B2%7D)
![=\frac{2x+1+3}{6}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2x%2B1%2B3%7D%7B6%7D)
![=\frac{2x+4}{6}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2x%2B4%7D%7B6%7D)
The game is fair if,
![\frac{2x+4}{6}=x](https://tex.z-dn.net/?f=%5Cfrac%7B2x%2B4%7D%7B6%7D%3Dx)
![2x + 4 = 6x](https://tex.z-dn.net/?f=2x%20%2B%204%20%3D%206x)
![4 = 4x](https://tex.z-dn.net/?f=4%20%3D%204x)
![\implies x = 1](https://tex.z-dn.net/?f=%5Cimplies%20x%20%3D%201)
Hence, the value of x would be $ 1.