Answer:
How can the solution be located?
find the intersection
Which integers is the x-coordinate between?
0 and 1
Which integers is the y-coordinate between?
2 and 3
What is the solution approximated to the tenths place?
(0.4,2.8)
Step-by-step explanation:
Answer:
The coordinates of ABCD after the reflection across the x-axis would become:
Step-by-step explanation:
The rule of reflection implies that when we reflect a point, let say P(x, y), is reflected across the x-axis:
- x-coordinate of the point does not change, but
- y-coordinate of the point changes its sign
In other words:
The point P(x, y) after reflection across x-axis would be P'(x, -y)
P(x, y) → P'(x, -y)
Given the diagram, the points of the figure ABCD after the reflection across the x-axis would be as follows:
P(x, y) → P'(x, -y)
A(2, 3) → A'(2, -3)
B(5, 5) → B'(5, -5)
C(7, 3) → C'(7, -3)
D(5, 2) → D'(5, -2)
Therefore, the coordinates of ABCD after the reflection across the x-axis would become:
If you look at the graph of y = floor(x), you'll see a stairstep pattern that climbs up as you read from left to right. There are no vertical components to the graph. There are only horizontal components.
The graph is not periodic because the y values do not repeat themselves after a certain x value is passed. For instance, start at x = 0 and go to x = 3. You'll see the y values dont repeat themselves as if a sine function would. If you wanted the function to be periodic, the steps would have to go downhill at some point; however, this does not happen.
Conclusion: The function floor(x) is <u>not</u> periodic.
Answer:
5 or 5/1
Step-by-step explanation:
did the math, this is the result. Not sure if it's right, correct me if I'm wrong