Answer:
(1,-1)
Step-by-step explanation:
y < 4x+5
x = 1, y = -1 => -1 < -4+5 (T)
Answer:
62
Step-by-step explanation:
Probly the first one it looks right
Answer:

Step-by-step explanation:
Both expressions are examples of the <em>distributive property</em>, which basically says "if I have <em>this </em>many groups of some size and <em>that</em> many groups of the same size, I've got <em>this </em>+ <em>that</em> groups of that size altogether."
To give an example, if I've got <em>3 groups of 5 </em>and <em>2 groups of 5</em>, I've got 3 + 2 = <em>5 groups of 5 </em>in total. I've attached a visual from Math with Bad Drawings to illustrate this idea.
Mathematically, we'd capture that last example with the equation
. We can also read that in reverse: 3 + 2 groups of 5 is the same as adding together 3 groups of 5 and 2 groups of 5; both directions get us 8 groups of 5. We can use this fact to rewrite the first expression like this:
.
This idea extends to subtraction too: If we have 3 groups of 4 and we take away 1 group of 4, we'd expect to be left with 3 - 1 = 2 groups of 4, or in symbols:
. When we start with two numbers like 15 and 10, our first question should be if we can split them up into groups of the same size. Obviously, you could make 15 groups of 1 and 10 groups of 1, but 15 is also the same as <em>3 groups of 5</em> and 10 is the same as <em>2 groups of 5</em>. Using the distributive property, we could write this as
, so we can say that
.
9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2