1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
3 years ago
8

The acceleration of a particle moving along a straight line is given by a = −kt2 m/s2 where k is a constant and time t is in sec

onds. The initial velocity of the particle at t = 0 is v0 = 12 m/s and the particle reverses it direction of motion at t = 6 s. Determine the constant k and the displacement of the particle over the same 6-second interval of motion. Ans: k = 1/6 m/s4, Δs = 54 m
Physics
1 answer:
RSB [31]3 years ago
5 0

Answer:

X - Xo = 54m

k = 1/18

Explanation:

Data:

a = -kt^{2}\frac{m}{s^{2} }

to = 0s    Vo = 12m/s

t = 6s the particle chage it's moviment, so v = 0 m/s

We know that acceleration is the derivative of velocity related to time:

a = \frac{dV}{dT}

rearranging...

a*dT = dV

Then, we must integrate both sides:

\int\limits^f_i {dV} \, dV =-k \int\limits^f_i {t^{2} } \, dT

V - Vo = -k\frac{t^{3} }{3}

V = 0 because the exercise says that the car change it's direction:

0 - 12 = -k\frac{6^{3} }{3}

k = 1/6

In order to find X - Xo we must integer v*dT = dX

V - Vo = -k\frac{t^{3} }{3}

so...

(Vo -k\frac{t^{3} }{3})dT = dX

\int\limits^f_i {dX} \, dX = \int\limits^f_i {Vo -k\frac{t^{3} }{3} } \, dT

integrating...

X - Xo = Vot -k\frac{t^{4} }{12}

X - Xo = 12*6 -\frac{1}{6}* \frac{6^{4} }{12}

X - Xo = 54m

You might be interested in
The equation T^2=A^3 shows the relationship between a planet’s orbital period, T, and the planet’s mean distance from the sun, A
kobusy [5.1K]

Answer:

D. 2^(3/2)

Explanation:

Given that

T² = A³

Let the mean distance between the sun and planet Y be x

Therefore,

T(Y)² = x³

T(Y) = x^(3/2)

Let the mean distance between the sun and planet X be x/2

Therefore,

T(Y)² = (x/2)³

T(Y) = (x/2)^(3/2)

The factor of increase from planet X to planet Y is:

T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)

T(Y) / T(X) = (2)^(3/2)

3 0
4 years ago
A satellite at a particular point along an elliptical orbit has a gravitational potential energy of 5100 MJ with respect to Eart
serious [3.7K]

To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,

E_{initial} = E_{final}

PE_{initial}+KE_{initial} = PE_{final}+KE_{final}

Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that

KE_{final} = (PE_{initial}+KE_{initial} )-PE_{final}

KE_{final} = (5100+4200)-5700

KE_{final} = 3600MJ

Therefore the final kinetic energy is 3600MJ

5 0
3 years ago
Which groups of organisms became extinct during the Paleozoic Era
guapka [62]
Dinosaurs but I need the whole groups yo tell you ;)
4 0
3 years ago
At its natural resting length, a muscle is close to its optimallength for producing force. As the muscle contracts, the maximumf
lesantik [10]

Answer:

Figure E is the correct representation of the first part of the motion. When in a hanging position from the chin-up bar, the bicep muscles are stretched beyond their normal length already. So at this point they are at the peak of their capacity and you are at rest (this corresponds to the velocity v = 0 at t = 0). On contracting the bicep muscles and pulling your whole body up, you begin to gain speed and v increases. This increase in velocity is exponential. Soon the bicep muscles contract up to 80% their normal length reducing the force they can produce to keep you rising up to zero. The velocity change happens because the body is accelerating and the muscles can still supply a net force to lift you up. The acceleration is present because of this net force. The moment this force reduces to zero, the acceleration too reduces to zero. (From Newton's second law of motion). This reduction in acceleration is responsible for the reduction of the curvature of the v curve in figure E above. The point where the velocity becomes horizontal corresponds to the point where the muscles reach their maximum contraction unit and can supply no more net force and as a result no acceleration. This further results inba constant velocity which is the flat nature of the curve seen in diagram E.

Thank you for reading.

Explanation:

5 0
3 years ago
Please need help fast
iVinArrow [24]

(a) See graph in attachment

The appropriate graph to draw in this part is a graph of velocity vs time.

In this problem, we have a horse that accelerates from 0 m/s to 15 m/s in 10 s.

Assuming the acceleration of the horse is uniform, it means that the velocity (y-coordinate of the graph) must increase linearly with the time: therefore, the velocity-time graph will appear as a straight line, having the final point at

t = 10 s

v = 15 m/s

(b) 1.5 m/s^2

The average acceleration of the horse can be calculated as:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time interval

In this problem,

u = 0

v = 15 m/s

t = 10 s

Substituting,

a=\frac{15-0}{10}=1.5 m/s^2

(c) 75 m

For a uniformly accelerated motion, the distance travelled can be calculated by using the suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance travelled

u is the initial velocity

t is the time interval

a is the acceleration

In this problem,

u = 0

t = 10 s

a=1.5 m/s^2

Substituting,

s=0+\frac{1}{2}(1.5)(10)^2=75 m

(d) See attached graphs

In a uniformly accelerated motion:

- The distance travelled (x) follows the equation mentioned in part c,

x=ut+\frac{1}{2}at^2

So, we see that this has the form of a parabola: therefore, the graph x vs t will represents a parabola.

- The acceleration is constant during the motion, and its value is

a=1.5 m/s^2 (calculated in part b)

therefore, the graph acceleration vs time will show a flat line at a constant value of 1.5 m/s^2.

6 0
3 years ago
Other questions:
  • Anyone tell me what is the physics​
    10·1 answer
  • What variables show a direct relationship? Check all that apply. the speed of a car and the distance traveled the elevation abov
    7·2 answers
  • Which velocity-time graph matches the position-time graph?
    15·2 answers
  • What is the unit for current? <br> a. a <br> b. c <br> c. i <br> d. t
    5·1 answer
  • What is Ohm's Law, and how does it work in real life.
    11·1 answer
  • A real battery with internal resistance 0.460 Ω and emf 9.00 V is used to charge a 56.0-µF capacitor. A 21.0-Ω resistor is put i
    5·2 answers
  • The 8.1 N weight is in equilibrium under the influence of the three forces acting on it. The F force acts from above on the left
    10·1 answer
  • Will mark brainliest!! Answer fast and correct.
    13·1 answer
  • A 2kg mass moving at a speed of 3 m/s is stopped by a constant force of 15N. How many seconds must the force act on the mass to
    10·1 answer
  • The average speed of an object which moves 100 m in 5 seconds is?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!