Answer:
Explanation:
Pressure is equal to the force divided by the area on which it acts. Since the smaller piston has less area so from less force also we can get more efficiency in work. And according to the Pascal's principle, in a hydraulic system, pressure exerted on a piston produces an equal increase in pressure on another piston in the system. Thus by applying little force in the smaller piston, we can get same force from larger piston too. A hydraulic machine magnifies force.
The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
The index of refraction of light varies from color to color. TRUE.
Compressional waves can travel through all states of matter.
1. 2500/60 joules/sec
2. 2,500Nm