Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula
If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:
Explanation:
From the question we are told that
Speed of a transverse wave given by
Maximum Tension is
Generally making subject from the equation mathematically we have
Therefore the Linear mass in terms of Velocity is given by
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.
The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.
Hope this helps! :)
Kinematics is the study of the motion of a system of bodies without directly considering the forces or potential fields affecting the motion. In other words, kinematics examines how momentum and energy are shared among interacting bodies.