Answer:
The acceleration of the body, a = 2193 m/s²
Explanation:
Given,
The mass of the body, m = 0.3 kg
The force acting on the body, F = 657.9 N
The force acting on an object is proportional to the product of mass and acceleration of the body.
F = m x a
Therefore, the acceleration of the body is
a = F / m
= 657.9 N / 0.3 kg
= 2193 m/s²
Hence, the acceleration of the body, a = 2193 m/s²
Answer:
W = 290.7 dynes*cm
Explanation:
d = 1/5 cm = 0.2 cm
The force is in function of the depth x:
F(x) = 1000 * (1 + 2*x)^2
We can expand that as:
F(x) = 1000 * (1 + 4*x + 4x^2)
F(x) = 1000 + 4000*x + 4000*x^2
Work is defined as
W = F * d
Since we have non constant force we integrate

W = [1000*x + 2000*x^2 + 1333*X^3] evaluated between 0 and 0.2
W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3
W = 200 + 80 + 10.7 = 290.7 dynes*cm
Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
The more arms it has the less of a chance the prey has to swim away.
Answer:
9213 J
Explanation:
Change in Kinetic energy = Change in Potential energy
= 12,928J - 3715J
=9213 J
For more assistance: +1 (304) 223-3136