1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vichka [17]
4 years ago
10

832x275 to the greatest place value

Mathematics
1 answer:
grandymaker [24]4 years ago
5 0

Answer:

200,000

Step-by-step explanation:

I think this is the answer

You might be interested in
A tissue box in the shape of a rectangular prism has a surface area of 158 square inches . The width is 5 inches and the height
Agata [3.3K]

Answer:

A. 8.0 inches

you will have to use the formula A= 2(LW + LH + WL)

3 0
3 years ago
Pls help !!! For my math class!
fiasKO [112]

Answer:

35 because they relevantly parrel which explains it alll

4 0
3 years ago
A household aquarium tank in the shape of a rectangular prism has a base length of 242424 inches (\text{in})(in)(, start text, i
mars1129 [50]

Answer:

The absolute change in the height of the water is 9.5 inches

Step-by-step explanation:

Given

l =24in --- length

w = 15in --- width

h =12in --- height

V_1 = 900in^3 --- the volume removed

Required

The absolute change in the height of the water

First, calculate the base area (b):

b = l * w

b =24in * 15in

b =360in^2

The height of the water that was removed is:

<em />H = \frac{V_1}{b}<em> i.e. the volume of the water removed divided by the base area</em>

H = \frac{900in^3}{360in^2}

H = \frac{900in}{360}

H = 2.5in

The absolute change in height is:

\triangle H = |h - H|

\triangle H = |12in - 2.5in|

\triangle H = |9.5in|

\triangle H = 9.5in

8 0
3 years ago
Determine if the following triangle is a right triangle or not using the Pythagorean Theorem Converse. Triangle with side length
Nadusha1986 [10]

Answer:

It is a right triangle

Step-by-step explanation:

Information needed:

Formula: a^2+b^2= c^2

a: leg

b: leg

c: hypotenuse

the longest side is always the hypotenuse, so 17 in

the order of legs don't matter so 8 in and 15 in

Solve:

a^2+b^2= c^2

8^2+15^2= 17^2

64+225= 289

289= 289

Final answer:

It is a right triangle

8 0
3 years ago
Read 2 more answers
What is the completely factored form of f(x)=x^3-7x^2+2x+4
xxMikexx [17]

Solution, \mathrm{Factor}\:x^3-7x^2+2x+4:\quad \left(x-1\right)\left(x^2-6x-4\right)

Steps:

x^3-7x^2+2x+4

Use\:the\:rational\:root\:theorem,\\a_0=4,\:\quad a_n=1,\\\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:4,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\\\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:4}{1},\\\frac{1}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x-1,\\\left(x-1\right)\frac{x^3-7x^2+2x+4}{x-1}

\frac{x^3-7x^2+2x+4}{x-1}

\mathrm{Divide}\:\frac{x^3-7x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}x^3-7x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{x^3}{x},\\\mathrm{Quotient}=x^2,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}x^2:\:x^3-x^2,\\\mathrm{Subtract\:}x^3-x^2\mathrm{\:from\:}x^3-7x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-6x^2+2x+4,\\Therefore,\\\frac{x^3-7x^2+2x+4}{x-1}=x^2+\frac{-6x^2+2x+4}{x-1}

\mathrm{Divide}\:\frac{-6x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-6x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-6x^2}{x}=-6x,\\\mathrm{Quotient}=-6x,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-6x:\:-6x^2+6x,\\\mathrm{Subtract\:}-6x^2+6x\mathrm{\:from\:}-6x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-4x+4,\\\mathrm{Therefore},\\\frac{-6x^2+2x+4}{x-1}=-6x+\frac{-4x+4}{x-1}

\mathrm{Divide}\:\frac{-4x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-4x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-4x}{x}=-4,\\\mathrm{Quotient}=-4,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-4:\:-4x+4,\\\mathrm{Subtract\:}-4x+4\mathrm{\:from\:}-4x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=0,\\\mathrm{Therefore},\\\frac{-4x+4}{x-1}=-4

\mathrm{The\:Correct\:Answer\:is\:\left(x-1\right)\left(x^2-6x-4\right)}

\mathrm{Hope\:This\:Helps!!!}

\mathrm{-Austint1414}

8 0
3 years ago
Other questions:
  • What is the input to a trigonometric function? A ratio, the x position of a point of the circle, a central angle of a circle or
    11·1 answer
  • Greatest common factor of: 12,90
    8·2 answers
  • Leon has a handful of of dimes and quarters valuing $3.40. He has 6 more dimes than he does quarters. How many of each coins doe
    14·1 answer
  • Enter the common ratio for the geometric sequence below.
    6·1 answer
  • How long would it take to travel 425 m at the rate of 50 m/sm/s ?
    14·2 answers
  • No one seems to be he;ping with this question so please help and show proof of how u got the answer
    6·1 answer
  • Find the y-intercept and the axis of symmetry of f(x)=ax2+2ax+3.
    15·1 answer
  • How do you graph y=6x-3
    10·1 answer
  • What the range of u(x)= -2x squr + 3
    6·1 answer
  • Perform the division write the result in STANDARD form. Show your work.<br> 2+i/7-i
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!