For the answer to the question above asking, w<span>hat was the price per can and the numbers of cans purchased each time?
let x be the number of cans he bought
the let us go to the 2nd statement which is t</span><span>he next time Ian purchased frozen orange juice, the price had increased by $0.10 per can and he bought 1 less can for the same total price.
The equation for this is .10(x-1) = 24
So now let's solve,
</span> .10(x-1) = 24
.10x - .10 = 24
.10x = 24+ .10
.10x = 24.10
Then divide both sides by .10
So the answer for this question is
241 cans of juice
Check the picture below on the left-side.
we know the central angle of the "empty" area is 120°, however the legs coming from the center of the circle, namely the radius, are always 6, therefore the legs stemming from the 120° angle, are both 6, making that triangle an isosceles.
now, using the "inscribed angle" theorem, check the picture on the right-side, we know that the inscribed angle there, in red, is 30°, that means the intercepted arc is twice as much, thus 60°, and since arcs get their angle measurement from the central angle they're in, the central angle making up that arc is also 60°, as in the picture.
so, the shaded area is really just the area of that circle's "sector" with 60°, PLUS the area of the circle's "segment" with 120°.

![\bf \textit{area of a segment of a circle}\\\\ A_y=\cfrac{r^2}{2}\left[\cfrac{\pi \theta }{180}~-~sin(\theta ) \right] \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=6\\ \theta =120 \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20segment%20of%20a%20circle%7D%5C%5C%5C%5C%0AA_y%3D%5Ccfrac%7Br%5E2%7D%7B2%7D%5Cleft%5B%5Ccfrac%7B%5Cpi%20%5Ctheta%20%7D%7B180%7D~-~sin%28%5Ctheta%20%29%20%20%5Cright%5D%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0Ar%3D6%5C%5C%0A%5Ctheta%20%3D120%0A%5Cend%7Bcases%7D)
There's two ways to do this.
The first way:
Work out the amount of sugar needed to make one cake, and then multiply that by 7.
30 grams ÷ 4 cakes = 7.5 grams for 1 cake.
7.5 grams × 7 cakes = 52.5 grams for 7 cakes.
The second way:
Work out the ratio of sugar:cake by doing 7 ÷ 4, and then multiplying that value by 30.
7 cakes ÷ 4 cakes = 1.75
1.75 × 30 grams = 52.5 grams for 7 cakes.
Either way, the answer is 52.5 grams.
Answer:
3x+y=5x-y
Step-by-step explanation: