1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
3 years ago
11

Suppose a geyser has a mean time between eruptions of 72 minutes. Let the interval of time between the eruptions be normally dis

tributed with standard deviation 23 minutes. Complete parts ​(a) through ​(e) below.
​(a) What is the probability that a randomly selected time interval between eruptions is longer than 82​minutes? The probability that a randomly selected time interval is longer than 82 minutes is approximately nothing. ​(Round to four decimal places as​ needed.)
​(b) What is the probability that a random sample of 13 time intervals between eruptions has a mean longer than 82 ​minutes? The probability that the mean of a random sample of 13 time intervals is more than 82 minutes is approximately nothing. ​(Round to four decimal places as​ needed.)​
(c) What is the probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes? The probability that the mean of a random sample of 34 time intervals is more than 82 minutes is approximately nothing. ​(Round to four decimal places as​ needed.) ​
(d) What effect does increasing the sample size have on the​ probability? Provide an explanation for this result. Fill in the blanks below. If the population mean is less than 82 ​minutes, then the probability that the sample mean of the time between eruptions is greater than 82 minutes ▼ increases decreases because the variability in the sample mean ▼ decreases increases as the sample size ▼ decreases. increases. ​
(e) What might you conclude if a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes? Select all that apply.
A. The population mean may be less than 72.
B. The population mean must be more than 72​, since the probability is so low.
C. The population mean cannot be 72​, since the probability is so low.
D. The population mean is 72​, and this is just a rare sampling.
E. The population mean may be greater than 72.
F. The population mean is 72​, and this is an example of a typical sampling result.
G. The population mean must be less than 72​, since the probability is so low.
Mathematics
1 answer:
nikitadnepr [17]3 years ago
6 0

Answer:

(a) The probability that a randomly selected time interval between eruptions is longer than 82 ​minutes is 0.3336.

(b) The probability that a random sample of 13-time intervals between eruptions has a mean longer than 82 ​minutes is 0.0582.

(c) The probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes is 0.0055.

(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.

(e) The population mean must be more than 72​, since the probability is so low.

Step-by-step explanation:

We are given that a geyser has a mean time between eruptions of 72 minutes.

Also, the interval of time between the eruptions be normally distributed with a standard deviation of 23 minutes.

(a) Let X = <u><em>the interval of time between the eruptions</em></u>

So, X ~ N(\mu=72, \sigma^{2} =23^{2})

The z-score probability distribution for the normal distribution is given by;

                            Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

Now, the probability that a randomly selected time interval between eruptions is longer than 82 ​minutes is given by = P(X > 82 min)

       P(X > 82 min) = P( \frac{X-\mu}{\sigma} > \frac{82-72}{23} ) = P(Z > 0.43) = 1 - P(Z \leq 0.43)

                                                           = 1 - 0.6664 = <u>0.3336</u>

The above probability is calculated by looking at the value of x = 0.43 in the z table which has an area of 0.6664.

(b) Let \bar X = <u><em>sample mean time between the eruptions</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

           n = sample of time intervals = 13

Now, the probability that a random sample of 13 time intervals between eruptions has a mean longer than 82 ​minutes is given by = P(\bar X > 82 min)

       P(\bar X > 82 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{82-72}{\frac{23}{\sqrt{13} } } ) = P(Z > 1.57) = 1 - P(Z \leq 1.57)

                                                           = 1 - 0.9418 = <u>0.0582</u>

The above probability is calculated by looking at the value of x = 1.57 in the z table which has an area of 0.9418.

(c) Let \bar X = <u><em>sample mean time between the eruptions</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time = 72 minutes

           \sigma = standard deviation = 23 minutes

           n = sample of time intervals = 34

Now, the probability that a random sample of 34 time intervals between eruptions has a mean longer than 82 ​minutes is given by = P(\bar X > 82 min)

       P(\bar X > 82 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{82-72}{\frac{23}{\sqrt{34} } } ) = P(Z > 2.54) = 1 - P(Z \leq 2.54)

                                                           = 1 - 0.9945 = <u>0.0055</u>

The above probability is calculated by looking at the value of x = 2.54 in the z table which has an area of 0.9945.

(d) Due to an increase in the sample size, the probability that the sample mean of the time between eruptions is greater than 82 minutes decreases because the variability in the sample mean decreases as the sample size increases.

(e) If a random sample of 34-time intervals between eruptions has a mean longer than 82 ​minutes, then we conclude that the population mean must be more than 72​, since the probability is so low.

You might be interested in
I’m so confused on how to do this -?
ANTONII [103]

Answer:

256

Step-by-step explanation:

any number to the 0 power equals 1, so r^0 equals 1

then, you have (4(1))^4

4×1=4

4^4=256

4 0
3 years ago
Read 2 more answers
What is 2 less than five times a number
miv72 [106K]

Answer:

2<5*X

Step-by-step explanation:

Hope this helped, Have a Wonderful Day!!

8 0
2 years ago
Read 2 more answers
The ratio of Wei Ling's age to Wei Xuan's age 5 years ago was 2: 5. In 9 years
Archy [21]

Answer:

15 years old

Step-by-step explanation:

Start by defining the variables that we are going to use throughout our working:

Let the current age of Wei Ling and Wei Xuan be L and X years old respectively.

Next, form equations using the given information.

<u>5 years </u><u>ago</u>

Wei Ling: (L -5) years old

Wei Xuan: (X -5) years old

Given that the ratio of Wei Ling's age to that of Wei Xuan's is 2: 5,

\frac{ L - 5}{X - 5}  =  \frac{2}{5}

Cross multiply:

2(X -5)= 5(L -5)

Expand:

2X -10= 5L -25

2X= 5L -25 +10

2X= 5L -15 -----(1)

<u>9 years time</u>

Wei Ling: (L +9) years old

Wei Xuan: (X +9) years old

Given that the ratio of Wei Ling's age to that of Wei Xuan is 3: 4,

\frac{L + 9}{X + 9}  =  \frac{3}{4}

Cross multiply:

3(X +9)= 4(L +9)

Expand:

3X +27= 4L +36

3X= 4L +36 -27

3X= 4L +9 -----(2)

Let's solve using the elimination method.

(1) ×3:

6X= 15L -45 -----(3)

(2) ×2:

6X= 8L +18 -----(4)

(3) -(4):

6X -6X= 15L -45 -(8L +18)

0= 15L -45 -8L -18

0= 7L -63

7L= 63

L= 63 ÷7

L= 9

Substitute L= 9 into (1):

2X= 5(9) -15

2X= 45 -15

2X= 30

X= 30 ÷2

X= 15

Thus, Wei Xuan is 15 years old now.

6 0
2 years ago
HELP ME PLEASE geometry only answer if you know please!
topjm [15]

Answer:

2. Reason: Addition Property of Equality

3. Statement: 3x=18

4. Reason: Division property of Equality

5. Statement: x=6 Reason: Simplifying.

Step-by-step explanation:

I'm pretty sure this is correct.  

6 0
3 years ago
There are 482 studemts in the school and there are two Grade 4 classes: Ms.Ashley's and Mr.Ben's classes. Mrs. Aheley's class ha
Paraphin [41]

Answer:

<u>1.  45/482 of the students are in grade 4.</u>

<u>2.  5/9 of the students of the grade 4 are boys.</u>

<u>3. 7/15 of the grade 4 students are in Ms. Ashley's class</u>

<u>4. 3/4 of the students in Mr. Ben's class do not have siblings in the same school.</u>

<u>5. There are 14 students with glasses and 7 without glasses.</u>

Step-by-step explanation:

1. Let's review the information given to us for solving the questions:

Number of students in the school = 482

Ms. Ashley's Grade 4 class = 21 students

Ms. Ashley's Grade 4 class boys = 15 students

Ms. Ashley's Grade 4 class girls = 6 students

Ms. Ashley's Grade 4 class with glasses = 2/3 * 21 = 42/3 = 14 students

Mr. Ben's Grade 4 class = 24 students

Mr. Ben's Grade 4 class boys = 10 students

Mr. Ben's Grade 4 class girls = 14 students

Mr. Ben's Grade 4 class with siblings in the school = 1/4 * 24 = 24/4 = 6 students

2. Let's answer all the questions:

1. What fraction of the students in the school are in grade 4?

(Ms. Ashley's Grade 4 class + Mr. Ben's Grade 4 class)/ Number of students in the school

21 + 24 / 482 =<u> 45/482</u>

2. What fraction of the grade 4 students are boys?

(Ms. Ashley's Grade 4 boys + Mr. Ben's Grade 4 boys)/ (Ms. Ashley's Grade 4 class + Mr. Ben's Grade 4 class)

15 + 10 / 21 + 24

25 / 45 = <u>5/9</u>

3. What fraction of the grade 4 students are in Ms. Ashley's class?

Ms. Ashley's Grade 4 class / (Ms. Ashley's Grade 4 class + Mr. Ben's Grade 4 class)

21 / 21 + 24

21 / 45 = <u>7/15</u>

<u>4. What fraction of the students in Mr. Ben's class that do not have siblings in the same school?</u>

(Mr. Ben's Grade 4 class - Mr. Ben's Grade 4 class with siblings in the school)/ Mr. Ben's Grade 4 class

24 - 6 / 24

18 / 24 = <u>3/4</u>

<u>5. In Ms. Ashley's class, are there more students that wear glasses or do not wear glasses?</u>

<u>There are 14 students with glasses and 7 without glasses.</u>

4 0
3 years ago
Other questions:
  • Write the equation for the vertical line that contains point E(-7,7)
    12·1 answer
  • Which of the following expressions is equivalent to (–7)5? A. –7 • –7 • –7 • –7 • –7 B. –7 • 5 C. (–7) • 7 • (–7) • 7 • –7 D. 5
    8·2 answers
  • Please answer fast, I need great answers!!!!! This is mathematics.
    6·1 answer
  • Glenn budgets 1/6 of his weekly allowance for entertainment. Glenn's entertainment bill is 29. What is his weekly allowance?
    5·1 answer
  • Tina is saving to buy a notebook computer. She has two options. The first option is to put $400 away initially and save $20 ever
    6·1 answer
  • Need help please.........thank you
    14·2 answers
  • Find the perimeter of a regular hexagon with side length 4 meters.
    14·2 answers
  • Find the area of the triangle bounded by the lines y=x y=-x and y=6.
    13·1 answer
  • Could you guys help me????
    15·2 answers
  • In a city with two news papers the Times and Herald , 300 people are asked which newspaper they buy each day. Of these people 50
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!