Answer:
a

b

Explanation:
From the question we are told that
The speed of the spaceship is 
Here c is the speed of light with value 
The length is 
The distance of the star for earth is 
The speed is 
Generally the from the length contraction equation we have that
![l = l_o \sqrt{1 -[\frac{v}{c } ]}](https://tex.z-dn.net/?f=l%20%20%3D%20%20l_o%20%20%5Csqrt%7B1%20-%5B%5Cfrac%7Bv%7D%7Bc%20%7D%20%5D%7D)
Now the when at rest the length is 
So



Considering b
Applying above equation
![l =l_o \sqrt{1 - [\frac{v}{c } ]}](https://tex.z-dn.net/?f=l%20%20%3Dl_o%20%5Csqrt%7B1%20-%20%20%5B%5Cfrac%7Bv%7D%7Bc%20%7D%20%5D%7D)
Here 
So



Answer:
The planets in order from the sun are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and finally the dwarf planet Pluto. Most people have at least heard about our solar system and the planets in it.
Explanation:
<h3><u><em>
please mark me brainliest</em></u></h3>
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.
Answer:
P.E. = -0.449 J
Explanation:
Potential energy of a charge particle in any electrostatic field is defined as the amount of work done ( in negative ) to bring that charge particle from any position to a new position r.
Now Potential energy is defined by this formula,
P.E. = k q₁ q₂/ r
where P.E. is the potential energy.
k = 1/( 4πε₀) = 8.99 × 10⁹ C²/ ( Nm²)
q₁ = charge of one particle = +1.0μC
q₂ = charge of another particle = -5.0μC
r = distance = 0.1 m
Now , P.E. = 8.99 × 10⁹C²/ ( Nm²) * ( -5.0 × 10⁻⁶ C ) × ( 1 × 10⁻⁶ C ) / 0.1 m
P.E. = -0.449 J
Scott-Dannemiller, Koeninger, Briscoe, and Carter
Christopher-Briscoe, Dannemiller, and Koeninger
Dianne-Koeninger, Briscoe, and Carter
Kailee-Koeninger and Carter