The equation that relates distance, velocities, acceleration, and time is,
d = V₀t + 0.5gt²
where d is distance,
V₀ is the initial velocity,
t is time, and
g is the acceleration due to gravity (equal to 9.8 m/s²)
(1) Dropped rock,
(3 x 10² m ) = 0(t) + 0.5(9.8 m/s²)(t²)
The value of t from this equation is 24.73 s
(2) Thrown rock with V₀ = 26 m/s
(3 x 10² m) = (26)(t) + 0.5(9.8 m/s²)(t²)
The value of t from the equation is 5.61 s
The difference between the tim,
difference = 24.73 s - 5.61 s
difference = 19.12 s
<em>ANSWER: 19.12 s</em>
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
Lift is the upward force on the wing acting perpendicular to the relative wind and perpendicular to the aircraft's lateral axis. Lift is required to counteract the aircraft's weight.
Explanation:
Answer:
Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.