An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. The minimum coefficient of static friction needed for this claim to be possible is 0.7
In an inclined plane, the coefficient of static friction is the angle at which an object slide over another.
As the angle rises, the gravitational force component surpasses the static friction force, as such, the object begins to slide.
Using the Newton second law;




N = mg cos θ
Equating both force component together, we have:



From trigonometry rule:

∴



Therefore, we can conclude that the minimum coefficient of static friction needed for this claim to be possible is 0.7
Learn more about static friction here:
brainly.com/question/24882156?referrer=searchResults
The answer is “D. all of the above”!
Metal from the paper clip is attracted to the magnet, so it will naturally move toward and stick to the magnet. This will cause the paper clip to temporarily become a magnet for other metals. I hope this helped!
From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
p2 = 72/3
= 24 atm
Therefore; the new pressure will be 24 atm
<h2>Question:</h2>
Appliances connected so that they form a single pathway for charges to flow are connected in a(n)
<h2>Answer:</h2>
<u>A</u><u>.</u><u> </u><u>Series</u><u> </u><u>circuit</u><u> </u>
<h2>
<u>#CARRYONLEARNING</u><u> </u></h2><h2>
<u>#STUDYWELL</u><u> </u></h2>