Assuming that the can is motionless, we can then assume that the vertical component of T = mg and that Fe = the horizontal component of T.
<span> Since T itself is larger than it's vertical or horizontal components separately, then T is greater than all the forces.</span>
I would tell him, in the kindest, most gentle way I could manage,
to fahgeddaboudit.
The total amount of energy doesn't change. Energy is never created,
and it never disappears. If you have some energy, then it had to come
from somewhere, and if you used some energy, then it had to go
somewhere.
You can never get more energy out of the electromotor than you put into it,
and in the real world, you can't even get THAT much out, because some
of it is always used on the way through.
Pour yourself a cold glass of soda, then look up "Perpetual Motion" or
"Free Energy" on the internet, relax, and enjoy the show. They are all
fakes. They may not all be intentionally meant to fool you, but they are
all impossible.
Answer:
Explanation:
The charges will repel each other and go away with increasing velocity , their kinetic energy coming from their potential energy .
Their potential energy at distance d
= kq₁q₂ / d
= 9 x 10⁹ x 36 x 10⁻¹² / 2 x 10⁻² J
= 16.2 J
Their total kinetic energy will be equal to this potential energy.
2 x 1/2 x mv² = 16.2
= 3 x 10⁻⁶ v² = 16.2
v = 5.4 x 10⁶
v = 2.32 x 10³ m/s
When masses are different , total P.E, will be divided between them as follows
K E of 3 μ = (16.2 / 30+3) x 30
= 14.73 J
1/2 X 3 X 10⁻⁶ v₁² = 14.73
v₁ = 3.13 x 10³
K E of 30 μ = (16.2 / 30+3) x 3
= 1.47 J
1/2 x 30 x 10⁻⁶ x v₂² = 1.47
v₂ = .313 x 10³ m/s
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.