1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
14

Eugene spent $25 on a magazine and some candy bars. If the magazine cost $4 and each candy bar cost $3 then how many candy bars

did buy?​
Mathematics
1 answer:
Sophie [7]3 years ago
7 0

Answer:

3

Step-by-step explanation:

25=4x+3x

25=7x

25/7=3.5

25=4(3.5)+3(3.5)

25=14+10.5

10.5/3=3.5

he bought 3 candy bars

You might be interested in
The measure of angle ABC is<br> A<br> D<br> 60<br> 40°
Umnica [9.8K]
The measure of angle ABC is 100 because all you do is add the 60 to the 40 and get 100.
4 0
3 years ago
Rachel bought 48 ounces of nuts. how much is this in pounds
lyudmila [28]
The answer is 3 pounds
48=3
8 0
3 years ago
Read 2 more answers
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
12/15 in simplest form
alex41 [277]
\frac{12}{15} in simplest form:

First, find the greatest common factor (GCF) of 12, 15. 
Factors of 12: 1, 2, 3, 4, 6, 12
Factors of 15: 1, 3, 5, 15
The GCF is 3. 
Second, divide the numerator (12) by the GCF. / Your problem should look like: 12 ÷ 3 = 4
Third, divide the denominator (15) by the GCF. / Your problem should look like: 15 ÷ 3 = 5
Fourth, rewrite the fraction in the simplified form. / Your problem should look like: \frac{4}{5}

Answer: \frac{4}{5}

3 0
3 years ago
Read 2 more answers
A cube with 15-cm-long sides is sitting on the bottom of an aquarium in which the water is one meter deep. (Round your answers t
const2013 [10]

Answer:

0.204 KN

Step-by-step explanation:

Height above cube h= (100-15)/100 =  0.85 m

a) force on the top of the cube = ρgh×area

= 1000×9.81×0.85 = 8330 N/m^2

= 833 KN/m^2*0.15^2= 0.187 KN

b) Force on one side of the cube

on top = 8.33 KN/m^2

at bottom ρgh

= 1000×9.8×100/100

=9800 N/m^2

Net Force =  area of the diagram

= 8.33×(15/100)^2 + 1/2(9.8-8.33)×(15/100)^2

= 0.204 KN

6 0
3 years ago
Other questions:
  • A tennis ball has a diameter of 2.7 inches. The tennis coach wants to fill her storage shed with tennis balls. If the storage sh
    12·1 answer
  • Quadrilateral RSTU is a rectangle with diagonal RT. If rtu 8x + 4 and str = 3x – 2, find x
    12·1 answer
  • URGENT!
    8·2 answers
  • Which number line shows the solutions to n &lt; -3?<br> Ples help
    10·2 answers
  • 16 divided 18 = 3 divided n
    12·2 answers
  • Pieces of Mail. The number of pieces of mail
    11·1 answer
  • X plus 9 divided by 7 equals 3
    11·1 answer
  • Find the tangent for angle A
    7·1 answer
  • HELP ME PLEASE!!
    5·1 answer
  • 12 ÷ (6 - 2) + 2^3<br><br><br> plaese help me out
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!