C. 23 pairs
There are a total of 46 chromosomes
Answer:
H₂SO₄ will be the limiting reagent.
Explanation:
The balanced reaction is:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction).
You can use a simple rule of three as follows: if by stoichiometry 2 moles of Al(OH)₃ reacts with 3 moles of H₂SO₄, how much moles of H₂SO₄ will be needed if 0.4 moles of Al(OH)₃ react?

moles of H₂SO₄= 0.6 moles
But 0.6 moles of H₂SO₄ are not available, 0.40 moles are available. Since you have less moles than you need to react with 0.4 moles of Al(OH)₃, H₂SO₄ will be the limiting reagent.
Answer:
11.2 M
Explanation:
Given data:
Number of moles = 6.7 mol
Volume of solution = 0.6 L
Concentration /Molarity = ?
Solution:
Molarity:
It is number of moles of solute in to per kg or litters of solution. It can be calculated by the following formula.
Molarity = number of moles / Volume in L
Now we will put the values in formula.
Molarity = 6.7 mol / 0.6 L
Molarity = 11.2 mol/L
Molarity = 11.2 M
Answer:
Potassium chloride > Butanol >Propane > Ethane
Explanation:
Water is a polar solvent and it is likely to dissolve polar molecules.
KCl is ionic in nature and is completely polar and the solubility of the salt, potassium chloride is the highest.
Butanol can form hydrogen bonding with the water despite having a carbon chain. Thus, butanol will be at second.
Taking about, ethane and propane, both are non polar and least likely to dissolve in water. But, the extent of the London forces increases with the increase in the molecular weight. So, propane will dissolve faster than ethane.
The order is:
Potassium chloride > Butanol >Propane > Ethane
Answer:
All description is given in explanation.
Explanation:
Van der Waals forces:
It is the general term used to describe the attraction or repulsion between the molecules. Vander waals force consist of two types of forces:
1. London dispersion forces
2. Dipole-dipole forces
1. London dispersion forces:
These are the weakest intermolecular forces. These are the temporary because when the electrons of atoms come close together they create temporary dipole, one end of an atom where the electronic density is high is create negative pole while the other becomes positive . These forces are also called induce dipole- induce dipole interaction.
2. Dipole-dipole forces:
These are attractive forces , present between the molecules that are permanently polar. They are present between the positive end of one polar molecules and the negative end of the other polar molecule.
Hydrogen bonding:
It is the electrostatic attraction present between the atoms which are chemically bonded. The one atom is hydrogen while the other electronegative atoms are oxygen, nitrogen or flourine. This is weaker than covalent and ionic bond.
Ionic bond or electrostatic attraction:
It is the electrostatic attraction present between the oppositely charged ions. This is formed when an atom loses its electron and create positive charge and other atom accept its electron and create negative charge.
Hydrophobic interaction:
It is the interaction between the water and hydrophobic material. The hydrophobic materials are long chain carbon containing compound. These or insoluble in water.
Covalent bond:
These compounds are formed by the sharing of electrons between the atoms of same elements are between the different element's atoms. The covalent bond is less stronger than ionic bond so require less energy to break as compared to the energy require to break the ionic bond.