1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.
Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.
Answer:
b. transfer of electron(s).
Explanation:
An oxidation-reduction also called a redox reaction is a
chemical reaction in which electrons are transferred of between two species of reactants. It is a chemical reaction where the oxidation number of an atom, ion, or molecule, increases or decreases by losing or gaining electrons
Answer:
1.52 M
Explanation:
Molarity of a solution is calculated as follows:
Molarity = number of moles (n) ÷ volume (V)
Based on the information given in this question,
Volume of soda (V) = 9.13 L
number of moles = 13.83 mol
Molarity = 13.83 ÷ 9.13
Molarity = 1.52 M