(3, - 2)
given y = - 2, then
- 2x + 4 = - 2 ( solve for x )
subtract 4 from both sides
- 2x = - 6 ( divide both sides by - 2 )
x =
= 3
There seems to be a flaw with this question because it says that there are five x-intercepts but the given information only gives you 4 x-intercepts to work with.
Even means the graph is symmetric about the y-axis
The best answer is <span>A.(–6, 0), (–2, 0), and (0, 0)
because you do not have to worry about another point (0,0). Plus we need (-6,0) for it to be symmetric with (6,0).
Consider function f(x) = x²(x-6)(x+6)(x+2)</span>²(x-2)<span>². It is even and fits these conditions as it has x-intercepts at (6,0), (-6,0), (-2,0), (2,0), and (0,0). again, the question does not tell us the fifth x-intercept, so we need to assume that there is another one that needs to be there...and so (-2,0) must have (2,0) for it to be even as well.</span>
Answer:
1
Step-by-step explanation:
To answer this question, we need to that any number (except zero) raised to power 0 is equal to 1. With that in mind, let's solve this:
2y^0 - (3y)^0
= 2(1) - (1)
= <u>1</u>
<em>N</em><em>o</em><em>t</em><em>e</em><em>:</em><em> </em><em>2</em><em>y</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>y</em><em>^</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>1</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>w</em><em>h</em><em>e</em><em>r</em><em>e</em><em>a</em><em>s</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>2</em><em>y</em><em>)</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>1</em>