Answer :
(-3.7 meter/second) - (13.9 meter/second) = -17.6 meter/second
(21.4 second) - (72 second) = -50.6 second
Explanation :
(1) As we are given the expression :
(-3.7 meter/second) - (13.9 meter/second)
Now we have to evaluate this expression, we get:
⇒ -17.6 meter/second
(2) As we are given the expression :
(21.4 second) - (72 second)
Now we have to evaluate this expression, we get:
⇒ -50.6 second
Answer:
true
Explanation:
dbgkdodocofkci ifkdcl k kfododocp v
Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
Answer:
a) t₁ = 4.76 s, t₂ = 85.2 s
b) v = 209 ft/s
Explanation:
Constant acceleration equations:
x = x₀ + v₀ t + ½ at²
v = at + v₀
where x is final position,
x₀ is initial position,
v₀ is initial velocity,
a is acceleration,
and t is time.
When the engine is on and the sled is accelerating:
x₀ = 0 ft
v₀ = 0 ft/s
a = 44 ft/s²
t = t₁
So:
x = 22 t₁²
v = 44 t₁
When the engine is off and the sled is coasting:
x = 18350 ft
x₀ = 22 t₁²
v₀ = 44 t₁
a = 0 ft/s²
t = t₂
So:
18350 = 22 t₁² + (44 t₁) t₂
Given that t₁ + t₂ = 90:
18350 = 22 t₁² + (44 t₁) (90 − t₁)
Now we can solve for t₁:
18350 = 22 t₁² + 3960 t₁ − 44 t₁²
18350 = 3960 t₁ − 22 t₁²
9175 = 1980 t₁ − 11 t₁²
11 t₁² − 1980 t₁ + 9175 = 0
Using quadratic formula:
t₁ = [ 1980 ± √(1980² - 4(11)(9175)) ] / 22
t₁ = 4.76, 175
Since t₁ can't be greater than 90, t₁ = 4.76 s.
Therefore, t₂ = 85.2 s.
And v = 44 t₁ = 209 ft/s.