Answer:
The length of the string is 0.051 meters
Explanation:
It is given that,
Tension in the string, T = 240 N
Mass of the string, m = 0.086 kg
Speed of the wave, v = 12 m/s
The speed of the wave on the string is given by :

M is the mass per unit length of the string i.e. M = m/l.......(1)
So, 

M = 1.67 kg/m
The length of the string can be calculated using equation (1) :


l = 0.051 m
So, the length of the string is 0.051 meters. Hence, this is the required solution.
To determine the mass plated, we use Faraday's Law of Electrolysis. We calculate as follows:
q = It
q = 8.70 (33.5) (60)
q = 17487 C
mass = 17487 C ( 1 mol e- / 96500 C) ( 1 mol / 2 mol e-) (107.9 g /mol)
mass = 9.78 g
Hope this helps.
Answer:
figure one (step up transformer) helps in increasing the output voltage
figure two (step down transformer) helps in decreasing the output voltage
Answer:
Oppositely charged particles attract each other, while like particles repel one another. Electrons are kept in the orbit around the nucleus by the electromagnetic force, because the nucleus in the center of the atom is positively charged and attracts the negatively charged electrons.
Explanation: