Answer:
Step-by-step explanation:
x+x+9=65
2x=56
x=28
28,37
Answer:
(3×3)+2=11
$11
Step-by-step explanation:
so hmmm seemingly the graphs meet at -2 and +2 and 0, let's check

so f(x) = g(x) at those points, so let's take the integral of the top - bottom functions for both intervals, namely f(x) - g(x) from -2 to 0 and g(x) - f(x) from 0 to +2.
![\stackrel{f(x)}{2x^3-x^2-5x}~~ - ~~[\stackrel{g(x)}{-x^2+3x}]\implies 2x^3-x^2-5x+x^2-3x \\\\\\ 2x^3-8x\implies 2(x^3-4x)\implies \displaystyle 2\int\limits_{-2}^{0} (x^3-4x)dx \implies 2\left[ \cfrac{x^4}{4}-2x^2 \right]_{-2}^{0}\implies \boxed{8} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bf%28x%29%7D%7B2x%5E3-x%5E2-5x%7D~~%20-%20~~%5B%5Cstackrel%7Bg%28x%29%7D%7B-x%5E2%2B3x%7D%5D%5Cimplies%202x%5E3-x%5E2-5x%2Bx%5E2-3x%20%5C%5C%5C%5C%5C%5C%202x%5E3-8x%5Cimplies%202%28x%5E3-4x%29%5Cimplies%20%5Cdisplaystyle%202%5Cint%5Climits_%7B-2%7D%5E%7B0%7D%20%28x%5E3-4x%29dx%20%5Cimplies%202%5Cleft%5B%20%5Ccfrac%7Bx%5E4%7D%7B4%7D-2x%5E2%20%5Cright%5D_%7B-2%7D%5E%7B0%7D%5Cimplies%20%5Cboxed%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{g(x)}{-x^2+3x}~~ - ~~[\stackrel{f(x)}{2x^3-x^2-5x}]\implies -x^2+3x-2x^3+x^2+5x \\\\\\ -2x^3+8x\implies 2(-x^3+4x) \\\\\\ \displaystyle 2\int\limits_{0}^{2} (-x^3+4x)dx \implies 2\left[ -\cfrac{x^4}{4}+2x^2 \right]_{0}^{2}\implies \boxed{8} ~\hfill \boxed{\stackrel{\textit{total area}}{8~~ + ~~8~~ = ~~16}}](https://tex.z-dn.net/?f=%5Cstackrel%7Bg%28x%29%7D%7B-x%5E2%2B3x%7D~~%20-%20~~%5B%5Cstackrel%7Bf%28x%29%7D%7B2x%5E3-x%5E2-5x%7D%5D%5Cimplies%20-x%5E2%2B3x-2x%5E3%2Bx%5E2%2B5x%20%5C%5C%5C%5C%5C%5C%20-2x%5E3%2B8x%5Cimplies%202%28-x%5E3%2B4x%29%20%5C%5C%5C%5C%5C%5C%20%5Cdisplaystyle%202%5Cint%5Climits_%7B0%7D%5E%7B2%7D%20%28-x%5E3%2B4x%29dx%20%5Cimplies%202%5Cleft%5B%20-%5Ccfrac%7Bx%5E4%7D%7B4%7D%2B2x%5E2%20%5Cright%5D_%7B0%7D%5E%7B2%7D%5Cimplies%20%5Cboxed%7B8%7D%20~%5Chfill%20%5Cboxed%7B%5Cstackrel%7B%5Ctextit%7Btotal%20area%7D%7D%7B8~~%20%2B%20~~8~~%20%3D%20~~16%7D%7D)
Answer:
Step-by-step explanation:
Isolate the variable of y from one side of the equation.
-14=5(3y-10)-5y
<u>First, switch sides.</u>

Use the distributive property.
<u>DISTRIBUTIVE PROPERTY:</u>
A(B-C)=AB-AC
5(3y-10)
Multiply by expand.
5*3y=15y
5*10=50
15y-50-5y
15y-5=10y
= 10y-50
10y-50=-15
Add by 50 from both sides.
10y-50+50=-15+50
Solve.
10y=35
Then, you divide by 10 from both sides.
10y/10=35/10
Solve.
Divide the numbers from left to right.
35/10=7/2
y=7/2
Divide is another option.
7/2=3.5

- <u>Therefore, the correct answer is y=7/2.</u>
I hope this helps. Let me know if you have any questions.
<span>We can safely assume that 1212 is a misprint and the number of seats in a row exceeds the number of rows by 12.
Let r = # of rows and s = # of seats in a row.
Then, the total # of seats is T = r x s = r x ( r + 12), since s is 12 more than the # of rows.
Then
r x (r + 12) = 1564
or
r**2 + 12*r - 1564 = 0, which is a quadratic equation.
The general solution of a quadratic equation is:
x = (-b +or- square-root( b**2 - 4ac))/2a
In our case, a = 1, b = +12 and c = -1564, so
x = (-12 +or- square-root( 12*12 - 4*1*(-1564) ) ) / 2*1
= (-12 +or- square-root( 144 + 6256 ) ) / 2
= (-12 +or- square-root( 6400 ) ) / 2
= (-12 +or- 80) / 2
= 34 or - 46
We ignore -46 since negative rows are not possible, and have:
rows = 34
and
seats per row = 34 + 12 = 46
as a check 34 x 46 = 1564 = total seats</span>