Answer:
1632 Hz
Explanation:
We'll begin by calculating the frequency of each wave. This can be obtained as follow:
1st wave:
Velocity (v) = 340 m/s.
Wavelength 1 (λ₁) = 5 m
Frequency 1 (f₁) =?
v = λ₁f₁
340 = 5 × f₁
Divide both side by 5
f₁ = 340 / 5
f₁ = 68 Hz
2nd wave:
Velocity (v) = 340 m/s.
Wavelength 2 (λ₂) = 0.2 m
Frequency 2 (f₂) =?
v = λ₂f₂
340 = 0.2 × f₂
Divide both side by 0.2
f₂ = 340 / 0.2
f₂ = 1700 Hz
Finally, we shall determine the difference in the frequency of both waves.
This can be obtained as follow:
Frequency 1 (f₁) = 68 Hz
Frequency 2 (f₂) = 1700 Hz
Difference =?
Difference = f₂ – f₁
Difference = 1700 – 68
Difference = 1632 Hz
Answer: A 13.88 mL of the concentrated acid would be required to make 250. mL of a 1.00 M
solution.
Explanation:
Given:
= 18.0 M,
= ?
= 1.00 M,
= 250 mL
Formula used to calculate the volume of concentrated acid is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that 13.88 mL of the concentrated acid would be required to make 250. mL of a 1.00 M
solution.
Answer:
C
Explanation:
the equater is hotter and the poles is cooler
The mixture of rock particle sand humus is called the soil.
If soil contains greater proportion of big particles it is called sandy soil. If the proportion of fine particles is relatively higher, then it is called clayey soil. If the amount of large and fine particles is about the same, then the soil is called loamy.