The conjugate acid of ch3nh2 is ch3nh3+<span>.
</span>For example methylamine in water chemical reaction:
CH₃NH₂(aq)+ H₂O(l) ⇌ CH₃NH₃⁺(aq) + OH⁻(aq).
According
to Bronsted-Lowry theory acid are donor of protons and bases
are acceptors of protons (the hydrogen cation or H⁺). Methylamine (CH₃NH₂) is Bronsted base and it can accept proton and
become conjugate acid (CH₃NH₃⁺).
Answer:
b. 4/3
Explanation:
Given data
- Final pressure: P₂ = 3 P₁
- Final temperature: T₂ = 4 T₁
We can find by what factor will the volume of the sample change using the combined gas law.

200 volts of current will flow through the conductor.
Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 2.02 atm; V₁ = 736 mL; n₁ = n₁; T₁ = 1 °C
p₂ = ?; V₂ = 416 mL; n₂ = n₁; T₂ = 82 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = ( 1 + 273.15) K = 274.15 K
T₂ = (82 + 273.15) K = 355.15 K
(b) Calculate the new pressure

Answer:
b. E = 2,28V
Explanation:
The maximum work is the same than ΔG. As ΔG could be written as:
ΔG = nFE <em>(1)</em>
Where n is moles of electrons transferred, F is faraday constant (96485 J/Vmol) and E is the voltage of the cell.
For the reaction:
CH₃OH(l) + ³/₂O₂(g) → CO₂(g) + 2H₂O(l)
The oxidation state of C in CH₃OH is -2 but in CO₂ is +4, that means transferred electrons are +4 - -2 = <em>6e⁻</em>
Replacing in (1):
1320x10³ J = 6mol e⁻×96485J/Vmol×E
<em>E = 2,28V</em>
<em></em>
I hope it helps!