Answer:
We have to add 9.82 grams of calcium acetate
Explanation:
Step 1: Data given
Molarity of the calcium acetate solution = 0.207 M
Volume = 300 mL = 0.300 L
Molar mass calcium acetate = 158.17 g/mol
Step 2: Calculate moles calcium acetate
Moles calcium acetate = molarity * volume
Moles calcium acetate = 0.207 M * 0.300 L
Moles calcium acetate = 0.0621 moles
Step 3: Calculate mass calcium acetate
Mass calcium acetate = moles * molar mass
Mass calcium acetate = 0.0621 moles * 158.17 g/mol
Mass calcium acetate = 9.82 grams
We have to add 9.82 grams of calcium acetate
Answer:
= 0.030 M
Explanation:
We can take x to be the concentration in mol/L of Ag2SO4 that dissolves
Therefore; concentration of Ag+ is 2x mol/L and that of SO4^2- x mol/L.
Ksp = 1.4 x 10^-5
Ksp = [Ag+]^2 [SO42-]
= (2x)^2(x)
= 4x^3
Thus;
4x^3 = 1.4 x 10^-5
= 0.015 M
molar solubility = 0.015 M
But;
[Ag+]= 2x
Hence; silver ion concentration is
= 2 x 0.015 M
= 0.030 M
I believe the answer you are looking for is the 4th one.
Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]