Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
Answer:
B is the answer
Explanation:
Because it a molecular mass of one
Answer:
A. More mass
C. Shorter distance between them
Explanation:
The two characteristics of a body experiencing greater gravitational force are that they have mass and a shorter distance between them.
This is conformity with Newton's law of universal gravitation.
The law states that "every object attracts one another with a force that is directly proportional to their masses and inversely proportional to the square of the distance between them".
This law implies that the more the mass of two bodies, the more the gravitational force of attraction. And that the shorter the square of the distance between them, the more the attraction.
Answer:
What type of bonds are shown in this diagram?
A: covalent bonds
B: ionic bonds
C: hydrogen bonds
D: metallic bonds
(answer) metallic bonds
In what type of bonds do atoms join together because their opposite charges attract each other?
A: metallic bonds and covalent bonds
B: metallic bonds and ionic bonds
C: ionic bonds and covalent bonds
D: ionic bonds and hydrogen bonds
(answer) ionic bonds and hydrogen bonds
What types of bonds are shown in this diagram?
A: covalent bonds
B: ionic bonds
C: hydrogen bonds
D: metallic bonds
(answer) hydrogen bonds
Which statement best describes the types of bonds shown in the diagram?
A: an ionic bond; the hydrogen chloride molecule has an electrical charge
B: an ionic bond; a hydrogen ion is bonding with a chlorine atom
C: a covalent bond; the hydrogen atom’s two electrons are being shared with the chlorine atom
D: a covalent bond; the hydrogen atom’s single electron is being shared with the chlorine atom
(answer) a covalent bond; the hydrogen atom’s single electron is being shared with the chlorine atom
Which of the following bonds is the strongest?
A: hydrogen bonds
B: metallic bonds
C: valence bonds
D: covalent bonds
(answer)
Explanation:
UwU
Answer:
ΔHrxn = [(1) -1675.5 ( kJ/mole) + (2) 0 ( kJ/mole)] - [(1) -824.3 ( kJ/mole) + (2) 0 ( kJ/mole)]
Explanation:
ΔHrxn = 2ΔHf (Al₂O₃) - ΔHf (Fe₂O₃)
Remember that for pure elements in their standard state of temperature and pressure by definition their standard heats of formation are zero.
ΔHrxn = 2(-1675.7) - (-824.3) kJ/mol
ΔHrxn = 2527 kJ/mol