left to right so -infinity, 3
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 
Answer:
1,8 and 5,10
Step-by-step explanation:
Answer:
*See below*
Step-by-step explanation:
<u>Identify and Explain Error</u>
The method shown is using fractions to compare costs. This strategy does not work due to the fact that they have not factored in the $55 he pays for the car before hand. Also, 150 divided by 0.5 does not equal 30, it equals 300 so, even if he did not pay $55 beforehand, the equation is still incorrect.
<u>Correct Work/Solution</u>
$55 to rent
$0.50 per mile
Let's start by removing $55 from $150 to see how many dollars is left over for gas.
150 - 55 = 95
Then, divide 95 by 0.5
95 ÷ 0.5 = 190
He can drive at least 190 miles.
<u>Share Strategy</u>
Since he starts off paying $55 dollars out of $150, we need to subtract $55 by $150 to see how much cash he has left over for mileage. $150 minus $55 equals $95 so, he has $95 left over for mileage. $95 will then be divided by $0.50 to find out how many miles he can drive. We are dividing by $0.50 because that's the cost per mile. $95 divided by $0.50 equals 190 so he can drive at least 190 miles.
Note:
Hope this helps :)
Have a great day!
To write this in standard form, you need to eliminate the
fraction in the coefficient of variable x. You can do this by multiplying 8 to
the two sides of the equation:
8(y) = 8[(-5/8)x + 3]
8y = -5x + 24
Transpose the variable x to the other side:
5x + 8y = 24