Frank = F
Sue = S
John = J
F=3*S
F = J+15
S = J-1
If you want to find Frank's age, then his age would be equivalent to John's plus 15 years.
A.-Would not work because Frank is three times Sue's age, not John's (left hand side of the equation).
B.-Notice that the right hand side of the equation is equivalent to Sue's age, which we know is John-1, however it is currently written to be "three times Sue's age minus one" which would give us John's age, plus two more years than his actual age on the left hand side.
C.-Frank's age is equal to John's plus fifteen (right side of the equation) and Frank is equal to Sue's age times 3. But, if Sue is in terms of Johns, then Sue's age is John's minus one. Therefore, Frank's age is equal to three times Sue's age of John minus one, which is the left-hand side of our equation.
Therefore C is the answer. C:
Answer:
<h3>
It's about 365 cm²</h3>
Step-by-step explanation:
2×πr² + 2πr×h =
= 2×π×4² + 2π×4×10.5 =
= 32π + 84π =
= 116π ≈
≈ 364.42 cm²
Answer:42.55
Step-by-step explanation:
Les get the big boi out of the way first. We see that it is 3.5 by 9 and if we multiply we get 31.5. Next left triangle 2 by 2 so four but divided by 2 is 2. God so many 2's. So total is 33.5 so far. Next triangle is 2 by 5 soo 10 divided by 2 is 5. total is 38.5. Last dude in the middle. We know one side is two so we have to subtract here from the triangles which gets u the other side of 2 so 4. Total is 42.5
Answers:Part A: The value of x is 0.Part B: X can be any real number.
In Part A, you have to first evaluate 7^2. This is 49. Now, write the equation 49^x = 1. We know that if you raise any number to 0, then the answer is 1.
In Part B, you have to first evaluate 7^0, that is 1. Now, we have the equation 1^x = 1. In this case, 1 raised to any exponent is still only 1. Imagine 1^17, this would be 1 times itself 17 times or just 1.
Therefore any number will work in Part B.
(a) Using the table, give the values fo rthe inverse
1) original table of values:
x 1 2 3 4 5
f(x) 0 1 1 5 3
2) The inverse of the function is obtained by exchanging x and f(x), this is:
( x, f(x) ) → ( f(x), x)
3) So, the table of values of the inverse of the given function is:
x 0 1 1 5 3
f⁻¹ (x) 0 1 2 3 4
(b) Is the inverse a function?
No, the inverse is not a function, since the table of the inverse shows that the x -value 1 has two different images.
This ambigüity is opposite to the definition of a function, which requires that any input value has only one output. For that reason, the inverse is not a function. You cannot tell whether the image of 1 is 1 or 2, because both are images of the same value.