1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
11

Draw the Lewis structure for methane (CH4) and ethane (C2H6) in the box below. Then predict which would have the higher boiling

point. Finally, explain how you came to that conclusion.

Chemistry
1 answer:
Alinara [238K]3 years ago
7 0

Answer:

Ethane would have a higher boiling point.

Explanation:

In this case, for the lewis structures, we have to keep in mind that all atoms must have <u>8 electrons</u> (except hydrogen). Additionally, each carbon would have <u>4 valence electrons</u>, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.

Now, the main difference between methane and ethane is an <u>additional carbon</u>. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have <u>more area of interaction</u> for ethane. If we have more area of interaction we have to give <u>more energy</u> to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.

I hope it helps!

You might be interested in
Please help me!!!!!!​
Leona [35]

The answer is B

To write the equilibrium constant for an equation, all you have to do is divide the products by the reactants. The reactants are always on the left side, and the products are always on the right side. The coefficients of the elements will be written as the exponent of that same element. However, in this equation, we do not have to write any exponents, as there are no coefficient but 1.

5 0
3 years ago
What is the atomic nucleus made of ?
oksian1 [2.3K]
Answer: nucleons

Explanation:

The nucleons are the particles that constitue the nuclei of the atoms. Those are protons and neutrons.

They are not elementary particles (quarks are the elementary particles that form both protons and neutrons).

Protons are the particles that define the elements. Any different elements have different number of protons. H has one proton, He has 2 protons, Li has three protons, Na has 11 protons, U has 92 protons.

Protons are positively charged and the number of protons in any neutral atom is equal to the number of electrons (the electrons, which are elementary negatively charged particles, are around the nucleous).

Neutrons have not charge and are responsible for the stability of the nuclei. They are fundamental to avoid that the repulsion forces between the positively charged protons ends causing the collapse of the nuclei.

4 0
3 years ago
Read 2 more answers
How does a small set of elements combine to form molecules , compounds and mixtures, which are used in your daily lives?
Anastaziya [24]

Elements are the simplest substances in nature that cannot be broken down into smaller parts by normal chemical means. They contain only atoms of the same type, ones that have identical chemical properties. There are at least 90 naturally-occurring elements, plus man-made ones. If you look at a periodic table, you'll see the names of each of these elements and some of their properties (such as mass, or how heavy the atom is).

Molecules & Compounds

When atoms from different elements are joined together in groups, they form molecules. The atoms in molecules bind together chemically, which means that the atoms cannot be separated again by physical means, such as filtration. The molecule has different properties from the elements from which is was made. A water molecule is not three separate atoms, two hydrogen (H) and one oxygen (O), but it is actually a unique H2O molecule with its own set of distinct properties.

Like elements that are formed of atoms of the same sort, compounds are formed of molecules of the same sort. The elements can be combined into about 2 million different compounds! Did you know that eggshells are made up of a calcium carbonate compound? And citric acid, which is found in oranges and other citrus fruit, is a compound of carbon, hydrogen, and oxygen atoms. Your kids might find it helpful to do a science research project finding other common compounds around your house. Make hypotheses and do research using a chemistry reference book, web site, or text book to find out the answers.

There are more carbon compounds than compounds of any other element. Organic compound is the name for the carbon compounds found in all living things.

Mixtures - A Bit of This and That

All matter can be classified into two categories: pure substances and mixtures. A pure substance consists of a single element or compound. Iron is formed only of iron (Fe) atoms; table salt is formed only of sodium chloride (NaCl) molecules. A mixture, however, is made up of different compounds and/or elements. When salt is added to water to make saltwater, it becomes a mixture. The salt and water molecules do not combine to form new molecules, but only "mix" together while still retaining their identities. Air is also a mixture, containing just the right amounts of nitrogen, oxygen, and other gases for life on Earth.  

Not all mixtures have the same composition throughout. Salt water does, but Italian salad dressing does not--the parts separate and are not perfectly blended or homogenous. Mixtures of metals are called alloys (bronze is an alloy of copper and tin); liquid mixtures (such as saltwater) are called solutions.

The substances that make up a mixture can be separated by physical means because they have different physical properties (such as different melting points) and are not chemically bonded. A mixture can be separated into its parts in a variety of ways, including decantation (letting the sand in a mixture of water and sand settle, and then draining off the water, for example), filtering, and evaporation. You can use a kitchen funnel and coffee filter for filtration, and either use sunlight or low heat for evaporation. Try out these methods on saltwater and a sand and water mixture to see how they work and compare the results. Evaporation will work for both saltwater and sand and water solutions, but filtration will not work for saltwater. Can you think of other examples where a separating method will work for one mixture and not another? Another one to try is lemon juice, a mixture of water and citric acid; what do you think happens when it is boiled? The water evaporates and eventually leaves nothing but citric acid crystals

6 0
3 years ago
Such high amounts of pressure cause this layer to remain in a __________ state of matter even though the nickel and iron are at
Mkey [24]
Such high amounts of pressure cause this layer to remain in a _____solid_____ state of matter even though the nickel and iron are at such a high temperature.
4 0
3 years ago
Calculate the unit cell edge length for an 85 wt% fe-15 wt% v alloy. All of the vanadium is in solid solution, and, at room temp
Lady bird [3.3K]

Answer is 0.289nm.

Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.

wt % of Fe in Fe-V alloy = 85%

wt % of V in Fe-V alloy = 15%

We need to calculate edge length of the unit cell having bcc structure.

Using density formula,

\rho_{ave}=\frac{Z\times M_{ave}}{a^3\times N_A}

For calculating edge length,

a=(\frac{Z\times M_{ave}}{\rho_{ave}\times N_A})^{1/3}

For calculating M_{ave}, we use the formula

M_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{V}}{M_V}}

Similarly for calculating (\rho)_{ave}, we use the formula

\rho_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{\rho_{Fe}}+\frac{(wt\%)_{V}}{\rho_V}}

From the periodic table, masses of the two elements can be written

M_{Fe}= 55.85g/mol

M_{V}=50.941g/mol

Specific density of both the elements are

(\rho)_{Fe}=7.874g/cm^3\\(\rho)_{V}=6.10g/cm^3

Putting  M_{ave} and \rho_{ave} formula's in edge length formula, we get

a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}}  \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}}  \right )}  \right ]^{1/3}

a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}}  \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}}  \right )}  \right ]^{1/3}

By calculating, we get

a=2.89\times10^{-8}cm=0.289nm

7 0
2 years ago
Other questions:
  • How would the equilibrium change if NO2 were added to SO2(g) + NO2(g) NO(g) + SO3(g) + heat?
    8·2 answers
  • How is alchemy different from modern chemistry?
    6·2 answers
  • 2 PUNTIS
    6·1 answer
  • While washing his hands before the client consultation with Chloe, Jayden dropped some water onto the countertop. When he came b
    8·1 answer
  • Name one state of matter
    5·2 answers
  • At certain times during the process, the temperature increased. During these times, the heat that was absorbed took the form of
    7·1 answer
  • A scientist has decided to develop a new cancer treatment. She has observed how patients react to current treatments, how the tr
    15·2 answers
  • I'll give brianliest if correct .
    5·1 answer
  • State the postulates of Dalton's atomic theory. ​
    8·2 answers
  • What is the molarity of .200 L of solution in which 2.0 moles of sodium bromide is dissolved?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!