<span>A chemical reaction is required to separate the substances in a compound. The components of a mixture can be separated based on their physical properties using techniques like filtration or distillation.</span>
Answer:
true
because with the both states we increase the surface of reaction
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
First, we will need to find the density of the object, take the mass and divide it by the dispplaced water:
128/424 = 0.302 grams/milliliters
Convert that to kg/m3
We get: 302kg/m3
Divide that to the density of water: 1000kg/m3
302/1000 = 0.302
(thats a pretty darn light weighted metal)