Answer:
P1 = 2.5ATM
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15K
P1 = ?
P2 = 2ATM
applying combined gas equation,
P1V1 / T1 = P2V2 / T2
P1*V1*T2 = P2*V2*T1
Solving for P1
P1 = P2*V2*T1 / V1*T2
P1 = (2.0 * 34 * 318.15) / (28 * 308.15)
P1 = 21634.2 / 8628.2
P1 = 2.5ATM
The initial pressure was 2.5ATM
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
lead ii nitrate is the answer
A or C are the best options
A beachside all objects have thermal energy but thermal energy is the sum of the energy of all the particles so the more particles the more energy.