Answer:
<u>H2PO4- is a proton donor and HPO42_ is a proton acceptor</u>
Explanation:
Step 1: What are hydrogen ion donor and acceptor
in the following reaction we see that:
⇒ H2PO4- is more likely to give a H+ ion to form HPO42-.
⇒HPO42- is more likely to take a H+ ion, to form H2PO4-
The reaction of an acid in water solvent is described as a dissociation
:
HA ⇔ H+ + A-
⇒where HA is a proton acid
So, H2PO4- = HA and HPO42- = A-
Acids are proton donors. So, <u>H2PO4- is a proton donor and HPO42_ is a proton acceptor</u>
Answer:
the answer is distillation
molecules can be made of two of the same elements whereas a compound is always made of two different elements
I need the answers or a picture to help
Answer:
see explanation below
Explanation:
You are missing the reaction scheme, but in picture 1, I found a question very similar to this, and after look into some other pages, I found the same scheme reaction, so I'm gonna work on this one, to show you how to solve it. Hopefully it will be the one you are asking.
According to the reaction scheme, in the first step we have NaNH2/NH3(l). This reactant is used to substract the most acidic hydrogen in the alkine there. In this case, it will substract the hydrogen from the carbon in the triple bond leaving something like this:
R: cyclopentane
R - C ≡ C (-)
Now, in the second step, this new product will experiment a SN2 reaction, and will attack to the CH3 - I forming another alkine as follow:
R - C ≡ C - CH3
Finally in the last step, Na in NH3 are reactants to promvove the hydrogenation of alkines. In this case, it will undergo hydrogenation in the triple bond and will form an alkene:
R - CH = CH - CH3
In picture 2, you have the reaction and mechanism.