The only bond that involves the complete transfer of electrons is ionic bonding.
A metal that does not have much care for its electrons, such as Sodium, Na, is willing to give up its electron more freely. And an atom that really cares about having electrons might be a gas such as chlorine, Cl. The Chlorine atom takes the electron from Sodium, and then the newly formed ions of Na+ and Cl- bond because they have equal and opposite charges and opposites attract. NaCl is formed.
Hydrogen bonds aren’t actually real bonds (I know, the name is deceptive)
Covalent bonds involve the sharing of electrons.
I’m pretty sure metallic bonds is a made-up term.
Answer:
(3) 5.36
Explanation:
Since this is a titration of a weak acid before reaching equivalence point, we will have effectively a buffer solution. Then we can use the Henderson-Hasselbalch equation to answer this question.
The reaction is:
HAc + NaOH ⇒ NaAc + H₂O
V NaOH = 40 mL x 1 L/1000 mL = 0.040 L
mol NaOH reacted with HAc = 0.040 L x 0.05 mol/L = 0.002 mol
mol HAC originally present = 0.050 L x 0.05 mol/L = 0.0025 mol
mol HAc left after reaction = 0.0025 - 0.002 = 0.0005
Now that we have calculated the quantities of the weak acid and its conjugate base in the buffer, we just plug the values into the equation
pH = pKa + log ((Ac⁻)/(HAc))
(Notice we do not have to calculate the molarities of Ac⁻ and HAc because the volumes cancel in the quotient)
pH = -log (1.75 x 10⁻⁵) + log (0.002/0.0005) = 5.36
THe answer is 5.36
Answer:
My Understanding:
Explanation:
2 Carbon, 7 Hydrogen, 1 Oxygen, 1 Hydrogen plus 2 Oxygen is the reactants of 1 Carbon, 2 Oxygen plus 2 Hydrogen, and 1 Oxygen.
<span>The filament of the light bulb will get very hot. This will encourage a chemical reaction with most gases that are surrounding that filament - and the result is that the filament burns out. If the filament is in air, it combines with the carbon of carbon dioxide in the air, and the filament disintegrates. But argon is an inert gas - almost nothing reacts with it. So the filament takes a very long time (theoretically infinity) to burn out. But the bulb cannot contain 100% argon: 99.9% is typical; the remaining 0.1% being air. The bulb manufacturers can control the 'life' of a bulb, based on that principle: they do not want their bulbs to last forever!</span>
A wave.
Scientists now recognize that light can behave as both a particle and a wave.