Answer:
A = 349 g.
Explanation:
Hello there!
In this case, since the radioactive decay kinetic model is based on the first-order kinetics whose integrated rate law is:

We can firstly calculate the rate constant given the half-life as shown below:

Therefore, we can next plug in the rate constant, elapsed time and initial mass of the radioactive to obtain:

Regards!
Divide 1.25/3.93 and then multiply by 100 to get the percent. This equals 31.81%
Answer:
126 moles
Explanation:
2S +3 o2=2so3
So if 2 moles of so3 required 3 moles of oxygen
. So 84 moles of so3 will require 84*3/2=126 moles of oxygen
Hey there!
Na + H₂O → NaOH + H₂
First, balance O.
One on the left, one on the right. Already balanced.
Next, balance H.
Two on the left, three on the right. Let's add a coefficient of 2 in front of NaOH and a coefficient of 2 in front of H₂O, so we have 4 on each side.
Na + 2H₂O → 2NaOH + H₂
Lastly, balance Na.
One on the left, two on the right. Add a coefficient of 2 in front of Na.
2Na + 2H₂O → 2NaOH + H₂
This is our final balanced equation.
Hope this helps!