There are 3 Barium, 2 Phosphorus and 8 Oxygen in Barium Phosphate (Ba3(PO4)2, making 13 units. Multiply 0.0350 mol given by 13 and then you get 0.455 mol. Since they want atoms, multiply 0.455 by Avogadro's number (0.455 x 6.023 x 1023) and you get 2.74 atoms of barium phosphate.
Concentration of Solutions is oftenly expressed in Molarity. Molarity is the number of moles of solute dissolved per volume of solution.
Molarity = Moles / Volume
As,
Moles = Mass / M.mass
So,
Molarity = Mass / M.mass × Volume ---- (1)
Data Given;
Volume = 0.750 L
Mass = 52 g
M.mass = 180 g/mol
Putting Values in eq.1,
Molarity = 52 g ÷ (180 g.mol⁻¹ × 0.750 L)
Molarity = 0.385 mol.L⁻¹
Answer:
rotor
Explanation:
The part of the motor being pointed to is called the <em>rotor</em>.
Explanation:
Lithium is an electropositive element that readily loses electrons.
Oxygen is electronegative and it will readily accept electrons.
Due to this significant electronegativity differences between the two species they form electrovalent or ionic bonds between them.
2atoms of Li lose two electrons:
Li → Li²⁺ + e⁻
Lithium isoelectronic with helium
For oxygen;
O + 2e⁻ → O²⁻
Oxygen is isoelectronic with Neon
Two ions of the lithium combines with the oxygen to form the bond;
4Li + O₂ → 2Li₂O
The electrostatic attraction between the two ions forms the ionic bond
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......